CONTENTS

. Review of Fundamental Notions of Analysis	
A. Set Theory, Definitions	1
1. Sets	1
2. Mappings	2
3. Relations	5
4. Orderings	5
B. Algebraic Structures, Definitions	6
1. Groups	7
2. Rings	7
3. Modules	8
4. Algebras	9
5. Linear spaces	9
C. Topology	11
1. Definitions	11
2. Separation	13
3. Base	13
4. Convergence	14
5. Covering and compactness	15
6. Connectedness	16
7. Continuous mappings	16
8. Multiple connectedness	18
9. Associated topologies	20
10. Topology related to other structures	20
11. Metric spaces	22
metric spaces	22
Cauchy sequence; completeness	24
12. Banach spaces	25
normed linear spaces	25
Banach spaces	28
strong and weak topology; compactedness	29
13. Hilbert spaces	30
D. Integration	30
1. Introduction	31
2. Measures	32
3. Measure spaces	34

4. Measurable functions	39
5. Integrable functions	40
6. Integration on locally compact spaces	45
7. Signed and complex measures	48
8. Integration of vector valued functions	49
9. L^1 space	51
10. L^p space	52
E. Key Theorems in Linear Functional Analysis	56
1. Bounded linear operators	56
2. Compact operators	60
3. Open mapping and closed graph theorems	62
Problems and Exercises	63
Problem 1: Clifford algebra, Spin(4)	63
Exercise 2: Product topology	67
Problem 3: Strong and weak topologies in L^2	68
Exercise 4: Hölder spaces	69
See Problem VI 4: Application to the Schrödinger equation	0,7
II. Differential Calculus on Banach Spaces	71
A. Foundations	71
1. Definitions. Taylor expansion	71
2. Theorems	73
3. Diffeomorphisms	74
4. The Euler equation	76
5. The mean value theorem	78
6. Higher order differentials	79
B. Calculus of Variations	82
1. Necessary conditions for minima	82
2. Sufficient conditions	83
3. Lagrangian problems	86
C. Implicit Function Theorem. Inverse Function Theorem	88
1. Contracting mapping theorems	88
2. Inverse function theorem	90
3. Implicit function theorem	91
4. Global theorems	92
D. Differential Equations	94
1. First order differential equation	94
2. Existence and uniqueness theorems for the lipschitzian	74
case	95

•
1X

Problems and Exercises	98
Problem 1: Banach spaces, first variation, linearized equati	ion 98
Problem 2: Taylor expansion of the action; Jacobi fields; the	he
Feynman-Green function; the Van Vleck matri	
conjugate points; caustics	100
Problem 3: Euler-Lagrange equation; the small disturbance	
equation; the soap bubble problem; Jacobi field	
III. Differentiable Manifolds, Finite Dimensional Case	111
A. Definitions	111
1. Differentiable manifolds	111
2. Diffeomorphisms	115
3. Lie groups	116
B. Vector Fields; Tensor Fields	117
1. Tangent vector space at a point	117
tangent vector as a derivation	117
tangent vector defined by transformation properties	s 119
tangent vector as an equivalence class of curves	120
images under differentiable mappings	121
2. Fibre bundles	124
definition	124
bundle morphisms	126
tangent bundle	127
frame bundle	128
principal fibre bundle	128
3. Vector fields	130
vector fields	130
moving frames	132
images under diffeomorphisms	132
4. Covariant vectors; cotangent bundles	133
dual of the tangent space	133
space of differentials	135
cotangent bundle	135
reciprocal images	136
5. Tensors at a point	136
tensors at a point	136
tensor algebra	138
6. Tensor bundles; tensor fields	140
C. Groups of Transformations	141
1. Vector fields as generators of transformation groups	141
2. Lie derivatives	145
3. Invariant tensor fields	148

X

D. Lie Groups	150
1. Definitions; notations	150
2. Left and right translations; Lie algebra; structure constants	153
3. One-parameter subgroups	155
4. Exponential mapping; Taylor expansion; canonical coordinate	
5. Lie groups of transformations; realization	159
6. Adjoint representation	161
7. Canonical form	162
7. Cuitointui Ionn	102
Problems and Exercises	162
Problem 1: Change of coordinates on a fiber bundle,	102
configuration space, phase space	162
Problem 2: Lie algebras of Lie groups	165
Problem 3: The strain tensor	1612117.CZ
	170
Problem 4: The group manifolds of SO(3) and SU(2)	171
Problem 5: The 2-sphere	181
IV Integration on Monifolds	105
IV. Integration on Manifolds	187
A. Exterior Differential Forms	107
1. Exterior algebra	187 187
exterior product	188
local coordinates; strict components	189
change of basis	190
2. Exterior differentiation	191
3. Reciprocal image of a form (pull back)	195
4. Derivations and antiderivations	197
definitions	197
interior product	198
5. Forms defined on a Lie group	199
invariant forms	199
Maurer-Cartan structure equations	200
	859 86.5
$B. \ Integration$	201
1. Integration	201
orientation	201
odd forms	202
integration of <i>n</i> -forms in \mathbb{R}^n	202
partitions of unity	203
properties of integrals	204
2. Stokes' theorem	205
p-chains	206
integrals of p-forms on p-chains	207
boundaries	207
mappings of chains	209

CONTENTS xi

	proof of Stokes' theorem	211
	3. Global properties	212
	homology and cohomology	212
	0-forms and 0-chains	213
	Betti numbers	213
	Poincaré lemmas	213
	de Rham and Poincaré duality theorems	216
С.	Exterior Differential Systems	218
	1. Exterior equations	218
	2. Single exterior equation	218
	3. Systems of exterior equations	221
	ideal generated by a system of exterior equations	221
	algebraic equivalence	221
	solutions	222
	examples	224
	4. Exterior differential equations	225
	integral manifolds	225
	associated Pfaff systems	226
	generic points	226
	closure	226
	5. Mappings of manifolds	227
	introduction	227
	immersion	229
	embedding	229
	submersion	230
	6. Pfaff systems	230
	complete integrability	231
	Frobenius theorem	232
	integrability criterion	233
	examples	234
	dual form of the Frobenius theorem	236
	7. Characteristic system	238
	characteristic manifold	238
	example: first order partial differential equations	238
	complete integrability	241
	construction of integral manifolds	242
	Cauchy problem	244
	examples	247
	8. Invariants	249
2	invariant with respect to a Pfaff system	249
	integral invariants	251
	9. Example: Integral invariants of classical dynamics	253
	Liouville theorem	254
	canonical transformations	255
1	10. Symplectic structures and hamiltonian systems	255

xii

	Problems and Exercises	258
	Problem 1: Compound matrices	258
	Problem 2: Poincaré lemma, Maxwell equations, wormholes	259
	Problem 3: Integral manifolds	259
	Problem 4: First order partial differential equations, Hamilton-Jacobi	
	equations, lagrangian manifolds	260
	Problem 5: First order partial differential equations, catastrophes	265
	Problem 6: Darboux theorem	269
	Problem 7: Time dependent hamiltonians	271
	See Problem VI 11 paragraph c: Electromagnetic shock waves	
V.	Riemannian Manifolds	273
	A. The Riemannian Structure	273
	1. Preliminaries	273
	metric tensor	273
	hyperbolic manifold	275
	induced metric	278
	2. Existence of a riemannian structure	280
	proper structure	280
	hyperbolic structure	280
	Euler-Poincaré characteristic	281
	3. Star operator	281
	volume element	282
	star operator	283
	4. Isometries	285
	B. Connections	287
	1. Connections on a principle fibre bundle	287
	definitions	287
	covariant derivative, local coordinates	289
	existence of a connection	290
	curvature	291
	Cartan structure equations	291
	Bianchi identities	292
	definitions: canonical form and torsion form	293 293
	2. Linear connections	293
	covariant derivative	294
	connection forms	294
	parallel translation	295
	affine geodesic torsion and curvature	298
	3. Riemannian connection	300
	definitions	301
	locally flat manifolds	303
	TATACATA V. TIMAD TIMADITA STAND	

CONTENTS	xiii
4. Differential operators	305
exterior derivative	305
operator δ	305
divergence	306
laplacian	307
C. Geodesics	308
1. Arc length	308
2. Variations	309
Euler equations	311
energy integral	312
3. Exponential mapping	313
definition	313
normal coordinates	313 314
4. Geodesics on a proper riemannian manifold	314
properties	317
geodesic completeness	317
5. Geodesics on a hyperbolic manifold	317
Problems and Exercises	318
Problem 1: Maxwell equation; gravitational radiation	318
Problem 2: The Schwarzschild solution	323
Problem 3: Geodetic motion; equation of geodetic deviation;	
exponentiation; conjugate points	326
Problem 4: Spinors; spin connection	331
Problem 5: Causal structures; conformal spaces; Weyl tensor	336
VI. Distributions	343
TA. DIGUIO CONTO	
A. Test Functions	343
1. Seminorms	343
definitions	343
Hahn-Banach theorem	344
topology defined by a family of seminorms	344
2. D-spaces	347
definitions	347
inductive limit topology	349
convergence in $\mathcal{D}^m(U)$ and $\mathcal{D}(U)$	350
examples of functions in ${\mathcal D}$	351 357
truncating sequences	354 354
density theorem	354
B. Distributions	355
1. Definitions	355
distributions	355

	measures; Dirac measures and Leray forms	338
	distribution of order p	359
	support of a distribution	361
	distributions with compact support	361
	2. Operations on distributions	364
	sum	364
	product by C^{∞} function	364
	direct product	365
	derivations	366
	examples	367
	inverse derivative	370
	3. Topology on \mathscr{D}'	373
	weak star topology	373
	criterion of convergence	374
	4. Change of variables in \mathbb{R}^n	376
	change of variables in \mathbb{R}^n	376
	transformation of a distribution under a diffeomorphism	377
	invariance	379
	5. Convolution	379
	convolution algebra $L^1(\mathbb{R}^n)$	379
	convolution algebra \mathcal{D}'^+ and \mathcal{D}'^-	382
	derivation and translation of a convolution product	384
	regularization	385
	support of a convolution	385
	equations of convolution	386
	differential equation with constant coefficients	389
	systems of convolution equations	390
	kernels	391
	6. Fourier transform	394
	Fourier transform of integrable functions	394
	tempered distributions	396
	Fourier transform of tempered distributions	396
	Paley-Wiener theorem	397
	Fourier transform of a convolution	398
	7. Distribution on a C^{∞} paracompact manifold	400
	8. Tensor distributions	402
~	all Dutil Differentians	406
C.	Sobolev Spaces and Partial Differential Equations	406
	1. Sobolev spaces	407
	properties	408
	density theorems	
	W_p^{-m} spaces	409
	Fourier transform	410
	Plancherel theorem	410
	Sobolev's inequalities	411
	2. Partial differential equations	412

CONTENTO	
CONTENTS	XV

definitions	412
Cauchy-Kovalevski theorem	413
classifications	414
3. Elliptic equations; laplacians	415
elementary solution of Laplace's equation	415
subharmonic distributions	416
potentials	416
energy integral, Green's formula, unicity theorem	419
Liouville's theorem	420
boundary-value problems	422
Green function	423
introduction to hilbertian methods; generalized	
Dirichlet problem	425
hilbertian methods	427
example: Neumann problem	429
4. Parabolic equations	430
heat diffusion	430
5. Hyperbolic equation; wave equations	431
elementary solution of the wave equation	431
Cauchy problem	432
energy integral, unicity theorem	433
existence theorem	435
6. Leray theory of hyperbolic systems	436
7. Second order systems; propagators	442
Problems and Exercises	445
Problem 1: Bounded distributions	445
Problem 2: Laplacian of a discontinuous function	447
Exercise 3: Regularized functions	448
Problem 4: Application to the Schrödinger equation	448
Exercise 5: Convolution and linear continuous responses	450
Problem 6: Fourier transforms of $exp(-x^2)$ and $exp(ix^2)$	451
Problem 7: Fourier transforms of Heaviside functions and $Pv(1/x)$	452
Problem 8: Dirac bitensors	453
Problem 9: Legendre condition	453
Problem 10: Hyperbolic equations; characteristics	454
Problem 11: Electromagnetic shock waves	455
Problem 12: Elementary solution of the wave equation	458
Problem 13: Elementary kernels of the harmonic oscillator	458
VII. Differentiable Manifolds, Infinite Dimensional Case	463
A. Infinite-Dimensional Manifolds	463
1. Definitions and general properties	463
$oldsymbol{E}$ -manifolds	463

	differentiable functions	464
	tangent vector	464
	vector and tensor field	465
	differential of a mapping	466
	submanifold	467
	immersion, embedding, submersion	469
	flow a vector field	471
	differential forms	471
2.	Symplectic structures and hamiltonian systems	472
	definitions	472
	complex structures	472
	canonical symplectic form	474
	symplectic transformation	474
	hamiltonian vector field	474
	conservation of energy theorem	475
	riemannian manifolds	475
B. Th	eory of Degree; Leray-Schauder Theory	476
	Definition for finite dimensional manifolds	477
	degree	477
	integral formula for the degree of a function	478
	continuous mappings	480
2.	Properties and applications	481
	fundamental theorem	481
	Borsuk's theorem	482
	Brouwer's fixed point theorem	482
	product theorem -	483
3.	Leray-Schauder theory	483
	definitions	483
	compact mappings	484
	degree of a compact mapping	484
	Schauder fixed point theorem	485
	Leray-Schauder theorem	485
C. M	forse Theory	487
1.	Introduction	487
2.	Definitions and theorems	487
3.	Index of a critical point	491
4.	Critical neck theorem	492
D. C	ylindrical Measures, Wiener Integral	493
	Introduction	493
2.	Promeasures and measures on a locally convex space	495
	projective system	495
	promeasures	496
	image of a promeasure	498

CONTENTS	xvii
integration with respect to a promeasure of a cylindrical	
function	498
Fourier transforms	499
3. Gaussian promeasures	501
gaussian measures on \mathbb{R}^n	501
gaussian promeasures	502
gaussian promeasures on Hilbert spaces	503
4. The Wiener measure	
Wiener integral	506
sequential Wiener integral	507
Problems and Exercises	509
Problem A: The Klein-Gordon equation	509
Problem B: Application of the Leray-Schauder theorem	511
Problem C: The Reeb theorem	512
Problem D1: A metric on the space of paths with fixed end points	513
Problem D2: Measures invariant under translation	514
Problem D3: Cylindrical σ -field of $C([a, b])$	514
Problem D4: Generalized Wiener integral of a cylindrical function	515
References	52
Symbols	527

Index

533