Contents

weeken control and a second

Pre	face	to Volume III	٧
Cor	Contents of Volume I		XV
Cor	Contents of Volume II		xix
PA	RT	D LIE SUPERALGEBRAS, LIE SUPERGROUPS AND THEIR APPLICATIONS	1
20	In	troduction to Superalgebras and Supermatrices	
	1 2 3 4	The notion of grading Associative superalgebras Grassmann algebras Supermatrices	13
21	G	eneral Properties of Lie Superalgebras	21
	1 2 3	Lie superalgebras introduced Definitions and immediate consequences Subalgebras, direct sums, and homomorphisms of Lie	21
	4 5	superalgebras Graded representations of Lie superalgebras The adjoint representation and the Killing form of a Lie	31 35
		superalgebra	41
22	Sı	perspace and Lie Supergroups	45
	1	Grassmann variables as coordinates	45

	2	Analysis on superspace	46
		(a) The superspace $\mathbb{R}\mathbf{B}_{L}^{m,n}$	46
		(b) Differentiable functions on $\mathbb{R}\mathbf{B}_{L}^{m,n}$	50
		(c) Superanalytic and superdifferentiable functions on $\mathbb{R}\mathrm{B}_{L}^{m,n}$	56
		(d) Differentiation of supermatrices	65
	3	Linear Lie supergroups	68
	N-35	(a) The definition of a Lie supergroup and its associated "super" Lie algebra	68
		(b) The relationship between Lie superalgebras and Lie supergroups	75
23	Th	e Poincaré Superalgebras and Supergroups	79
	1	Introduction	79
	2	The $N=1$, $D=4$ Poincaré superalgebra and supergroup	80
	-	(a) The Lie superalgebra extension of the Poincaré algebra	80
		(b) The two-component formulation for the Poincaré	
		superalgebra	88
		(c) The $N = 1$, $D = 4$ Poincaré supergroup	92
		(a) Action of the $N=1$, $D=4$ Poincaré supergroup on	
		superspace	100
	3	Extended Poincaré superalgebras and Poincaré supergroups	
		for $D=4$	107
	4	The Poincaré superalgebras and supergroups for Minkowski	
		space-times of general dimension D	118
		(a) The unextended Poincaré superalgebras and supergroups for	
		general dimension D	118
		(b) The extended Poincaré superalgebras and supergroups for	
		general dimension D	123
	5	Irreducible representations of the unextended $D=4$	
		Poincaré superalgebra	126
		(a) Irreducible representations of the unextended $D=4$ Poincaré	
		superalgebra corresponding to $M>0$	127
		(b) Irreducible representations of the unextended $D=4$ Poincaré	405
		superalgebra corresponding to $M=0$	135
	6	Irreducible representations of the extended $D=4$ Poincaré	400
		superalgebras	138
		(a) Irreducible representations of the N-extended Poincaré	120
		superalgebra corresponding to $M>0$	138
		(b) Irreducible representations of the N-extended Poincaré	1 1 5
	_	superalgebra corresponding to $M=0$	145
	7	Irreducible representations of the Poincaré superalgebras for	149
		general space-time dimensions	145
		(a) Irreducible representations of the unextended	149
		D-dimensional Poincaré superalgebras	145
		(b) Irreducible representations of the extended D-dimensional	155
		Poincaré superalgebras	100

CONTENTS

24	Po	incaré Supersymmetric Fields	161
	1	Supersymmetric field theory	161
	2	Supersymmetric multiplets	162
		(a) The chiral multiplet in component form	162
		(b) The Wess-Zumino model in component form	170
		(c) The general multiplet in component form	174
	3	Superfields	181
		(a) The scalar superfield	182
		(b) The chiral superfields	185
		(c) Superfield formulation of the action of the Wess-Zumino	
		model	190
	4	Supersymmetric gauge theories	192
		(a) The component formulation of super-QED	192
		(b) Super-QED in a superfield formulation	201
		(c) Supersymmetric Yang-Mills theories in a superfield	200
		formulation	206
	5	Spontaneous symmetry breaking	214
25	Si	mple Lie Superalgebras	219
	1	An outline of the presentation	219
	2	The definition of a simple Lie superalgebra and some immediate	
	ě	consequences	220
	3	Classical simple Lie superalgebras	223
		(a) Definition and basic theorems	223
		(b) Basic classical simple complex Lie superalgebras	230
		(c) Simple roots, Cartan matrices, generalized Dynkin diagrams	
		and the Weyl group	238
	4	Graded representations of basic classical simple complex Lie	0.45
		superalgebras	245
		(a) Weights and highest weights	245
		(b) "Typical" and "atypical" irreducible representations	253
		(c) Casimir operators and indices of representations	260
	2	The classical simple real Lie superalgebras	267
	6	The conformal, de Sitter and anti-de Sitter superalgebras	275
DΛ	DТ	E INFINITE-DIMENSIONAL LIE ALGEBRAS AND	
FA	RT	SUPERALGEBRAS AND THEIR APPLICATIONS	279
		SUPERALGEBRAS AND THEIR APPLICATIONS	2/9
26	TI	ne Structure of Kac-Moody Algebras	281
	1	Introduction to infinite-dimensional Lie algebras	281
	2		282
	3	Properties of general Kac-Moody algebras	289
	100	Types of complex Kac-Moody algebras	299
		TW. William	

xii

	5	Affine Kac-Moody algebras	307
		(a) General deductions	307
		(b) Construction of the complex untwisted affine Kac-Moody	
		algebras	310
		(c) Construction of the complex twisted affine Kac-Moody	
		algebras	318
		(d) Root lattices and the Weyl group	329
		(e) The compact real form of a complex affine Kac-Moody	020
			334
	^	algebra	.505 (1467 110
	6	Kac-Moody superalgebras	335
27	Re	presentations of Kac-Moody Algebras	339
	1	Highest weight representations of general Kac-Moody algebras	339
	2	Highest weight representations of affine Kac-Moody algebras	342
	3	Character formulae	351
	4	The vertex construction of the basic representation of a simply	
		laced untwisted affine Kac-Moody algebra	353
	5	Representations of untwisted affine Kac-Moody algebras in terms	
		of fermion creation and annihilation operators	362
28	Th	ne Virasoro Algebra and Superalgebras	369
W 1944	Q a l		000
	1	The conformal algebras	369
		Representations of the Virasoro algebra	373
	3	Some constructions of highest weight representations of the	7 <u>2. 1-37</u>
		Virasoro algebra	376
	4	Virasoro superalgebras	382
29	ΑI	gebraic Aspects of the Theory of Strings and Superstrings	389
	1	Introduction	389
	2	The bosonic string	389
		(a) The Lagrangian density for the bosonic string	389
		(b) The classical open string	394
		(c) Light-cone quantization of the open bosonic string	398
		(d) Covariant quantization of the open bosonic string	402
		(e) The closed bosonic string	406
	3	The spinning string of Ramond, Neveu and Schwarz	411
		The superstring of Green and Schwarz	417
		(a) The light-cone Lagrangian density	417
		(b) Light-cone quantization of the open superstring	423
		(c) Light-cone quantization of the closed superstring	428
			431
	_	(d) Torus compactification, the field theory limit and interactions	
	၁	The heterotic string	437
		(a) The right-moving and left-moving modes	437

CONTENTS

		(b) The appearance of the $E_8 \oplus E_8$ algebras and the Spin(32)/Z ₂ group	441
	6	Further developments	446
AP	PEN	IDICES	449
App	oen	dix K Proofs of Certain Theorems on Supermatrices and Lie Superalgebras	451
	1	Proofs of Theorems I and IV of Chapter 20, Section 4	451
	2	Proof of Theorem I of Chapter 21, Section 4	457
	3	Proof of Theorem III of Chapter 21, Section 5	459
		Proofs of Theorems II, III, IV and V of Chapter 25, Section 2	460
	5	Proofs of Theorems VI, VIII, VIII, IX, XVI, XX, XXII and XXIII of	
	^	Chapter 25, Sections $3(a)$, $3(b)$ and $3(c)$	463
	ь	Proofs of Theorems III and IV of Chapter 25, Section 4(a)	470
App	en	dix L Clifford Algebras	475
	1	The Clifford algebras of D-dimensional space-times	475
	2	Irreducible representations for the case in which D is even	477
		(a) Explicit expressions for the matrices	477
		(b) Chirality of the representation	480
		(c) Reality of the spinor representation of $so(D-1,1)$	482
	_	(d) The generalized charge conjugation matrices	486
	3	Irreducible representations for the case in which D is odd	489 489
		 (a) Explicit expressions for the matrices (b) Non-chirality of the representations 	490
		(c) Reality of the spinor representations of $so(D-1,1)$	491
		(d) The generalized charge conjugation matrices	493
	4	Connections between representations of the <i>D</i> -dimensional	100
	ů.	Minkowski Clifford algebra and those of the $(D-2)$ -	
		dimensional Euclidean Clifford algebra	496
	5	A matrix identity for the $D=4$ Minkowski Clifford algebra	501
۸nr	\	div M. Properties of the Classical Simple Compley Lie	
-P F	<i>,</i>	dix M Properties of the Classical Simple Complex Lie Superalgebras	503
	1	The basic type I classical simple complex Lie superalgebras $A(r/s)$, $r > s \ge 0$	503
	2	The basic type I classical simple complex Lie superalgebras $A(r/r)$, $r \ge 1$	509
	3	The basic type II classical simple complex Lie superalgebras $B(r/s)$, $r \ge 0$, $s \ge 1$	513

	4	The basic type I classical simple complex Lie superalgebras $C(s)$, $s \ge 2$	521
	5	The basic type II classical simple complex Lie superalgebras $D(r/s)$	
	_	$r \ge 2$, $s \ge 1$	525
	6	The basic type II classical simple complex Lie superalgebras	
		$D(2/1; \alpha)$, with α a complex parameter taking all values other than	500
		0, −1 and ∞	532
	7	The basic type II classical simple complex Lie superalgebra $F(4)$	537
	8	The basic type II classical simple complex Lie superalgebra $G(3)$	542
	9	The strange type I classical simple complex Lie superalgebras	- 4-
	840004	$P(r), r \geqslant 2$	545
	10		
		$Q(r), r \geq 2$	547
App	end	dix N Properties of the Complex Affine Kac-Moody	E E 1
		Algebras	551
	1	The complex untwisted affine Kac-Moody algebra $A_1^{(1)}$	551
	2	The complex untwisted affine Kac-Moody algebras $A_i^{(1)}$, $l \ge 2$	552
	3	The complex untwisted affine Kac-Moody algebras $B_l^{(1)}$, $l \ge 3$	553
	4	The complex untwisted affine Kac–Moody algebras $C_l^{(1)}$, $l \ge 2$	554
	5	The complex untwisted affine Kac-Moody algebras $D_i^{(1)}$, $l \ge 4$	556
	6	The complex untwisted affine Kac-Moody algebra $E_6^{(1)}$	558
	7	The complex untwisted affine Kac-Moody algebra $E_7^{(1)}$	559
	8	The complex untwisted affine Kac-Moody algebra $E_8^{(1)}$	560
	9	The complex untwisted affine Kac-Moody algebra $F_4^{(1)}$	561
	10	The complex untwisted affine Kac-Moody algebra $G_2^{(1)}$	562
	11	The complex twisted affine Kac-Moody algebra $A_2^{(2)}$	563
	12	The complex twisted affine Kac-Moody algebras $A_{2l}^{(2)}$, $l \ge 2$	564
		The complex twisted affine Kac-Moody algebras $A_{2l-1}^{(2)}$, $l \ge 3$	566
		The complex twisted affine Kac-Moody algebras $D_{l+1}^{(2)}, l \ge 2$	568
		The complex twisted affine Kac-Moody algebra $E_6^{(2)}$	570
		The complex twisted affine Kac-Moody algebra $D_4^{(3)}$	571
Арр	ene	dix O Proofs of Certain Theorems on Kac-Moody and	
0 77 (1996)		Virasoro Algebras	575
	1	Proofs of Theorems I, III and IV of Chapter 27, Section 2	575
	2	Proofs of Theorems I and II of Chapter 27, Section 4	579
	3	Proof of Theorem I of Chapter 27, Section 5	589
	920	Proofs of Theorems I and II of Chapter 28, Section 3	591
	water 1888	1 10010 01 110010110 Carta II of Oriapio, mo, occine, o	in markets (g)
Refe	ren	ces for Volume III	599
Inde			617
HIUE	^		J . /

