TABLE OF CONTENTS

PREFACE	IX
INTRODUCTION	1
 CHAPTER I / THE HOPF-COLE SOLUTION OF THE NONLINEAR DIFFUSION EQUATION AND ITS GEOMETRICAL INTERPRETATION FOR THE CASE OF SMALL DIFFUSIVITY 1. Basic Solution 2. Geometric Interpretation of the Solution. – Possibility of Multiple Roots 3. Steep Fronts or 'Shock Waves'. General Form of the Solution for Large Values of t 4. Alternative Derivation of the Approximate Solution of Equation (1.1) in the Neighborhood of a Steep Front. Additional Observations 	9 11 18
 CHAPTER II / DIGRESSION ON GENERALIZATIONS OF THE GEOMETRIC METHOD OF SOLUTION. – SOLUTIONS OF EQUATION (1.1) FOR THE DOMAIN x>0 WITH A BOUNDARY CONDITION AT x=0 5. Application of the Geometric Method of Solution to Slightly More General Equations 6. Solutions of the Nonlinear Diffusion Equation with a Boundary Condition at x=0. Two Preliminary Cases 7. Generalization of Solution (6.6) 8. Extension to a Continuous Function 	21 24 26 31
CHAPTER III / STATISTICAL PROBLEMS CONNECTED WITH THE SOLUTIONS OF CHAPTER I, FOR $v \to +0$ and $t \to \infty$ 9. Ensemble of Initial Data-Curves. The Parameter J 10. Statistics of a Chain of Parabolic Arcs 11. Transformation of the Statistical Problem 12. Additional Observations	35 38 40 44
CHAPTER IV / SOLUTIONS OF THE LINEAR DIFFUSION EQUATION WITH A BOUNDARY CONDITION REFERRING TO A PARABOLA 13. Basic Functions	46 46
AND A WINCHOUSE	TU

14. Application of Green's Theorem	50
15. Solution of Equation (13.1) Assuming Prescribed Values on the Bound-	
ary	51
16. Change of the Form of the Boundary	52
17. Transformation to a Coordinate System with Inclined x-Axis	53
18. Extension of Equation (16.2)	54
19. Application of the Results of Sections 16 and 17 to a Parabolic Bound-	
ary	55
20. Integro-Differential Equation for $\theta(z)$	57
21. Series Development for $\theta(z)$	58
22. The Function $E(x)$	60
23. Application to a Parabolic Boundary	62
24. Effect of a Change of the Boundary upon $E(x)$	63
25. The Integral P_0	65
26. The Normalization Condition (10.10)	69
27. A Theorem Connected with the Integral P_1 for a Parabolic Boundary	70
CHAPTER V/DEVELOPMENT OF THE FUNCTIONS Ψ , E , F in terms of	
EXPONENTIALS MULTIPLIED BY BESSEL FUNCTIONS	72
28. The Transformation of the Differential Equation and its Solution	72
29. Properties of the Functions $q_0(v)$, $q_n(v)$	74
30. The Green's Function Connected with (28.6)	75
31. Summation Formulas	77
32. Series for the Functions ψ , Ψ , θ , ϕ	80
33. Expression for $E(x)$	82
CHAPTER VI/EVALUATION OF INTEGRALS AND SUMS DEPENDING ON	
THE FUNCTIONS Ψ , E , F	84
34. Basic Definitions	84
35. Initial Integrations and Summations	86
36. Series for the Functions R_m and I_m	90
37. More Summation Formulas	94
38. Continuation from Section 35	97
39. Results Obtained for the Integrals $P_0, P_1, \dots P^*$	102
40. Results Obtained for Some Additional Integrals	108
List of Integrals	110
APPENDIX TO CHAPTER VI	112
41. Additional Summation Formulas	112

CHAPTER VII / MEAN VALUES CONNECTED WITH THE SAWTOOTH CURVE	124
of figure 5	124
42. Recapitulation of Previous Results	124
43. Mean Values Referring to a Single Shock	125
44. Other Mean Values Which can be Expressed in a Simple Way	128
45. The Distribution Function for the Arc Lengths ξ_k	130
CHAPTER VIII / DISTRIBUTION FUNCTIONS REFERRING TO SETS OF TWO	
CONSECUTIVE ARCS	132
46. Integrals with Two Successive Ψ-Functions	132
47. Weighting Function for the Wavelengths λ_k	135
48. Alternative Expressions for the Functions K^* and L^*	138
49. Relations Involving the Quantity Φ_0	139
50. The Value of Φ_0	141
51. Evaluation of $\langle \xi_k \rangle^*$ for $\lambda \to 0$	143
52. Calculation of $\langle \xi_k \xi_{k+1} \rangle^*$ for $\lambda \to 0$	146
53. Calculation of $\langle \xi_k^2 \xi_{k+1} \rangle^*$ for $\lambda \to 0$	148
54. Application of Expressions (48.5) and (48.6) for K^* and L^*	150
CHAPTER IX/CORRELATION FUNCTIONS AND DISTRIBUTION FUNC-	
TIONS REFERRING TO SETS OF MORE THAN TWO CONSECUTIVE ARCS	
55. Calculation of $\overline{u_1u_2}$	152
56. Calculation of $\overline{u_1^2u_2}$	157
57. Behavior for Small Values of z	159
58. Behavior of the Sums Occurring in Equation (55.18) for Indefinitely Increasing Values of z	161
59. Behavior of the Sums Occurring in Equation (56.10) or (56.12) for In-	101
definitely Increasing Values of z	165
60. Integrals Referring to a Series of Consecutive Arcs	167
61. Continuation	169
62. The Integrals for the Functions $W_{0i}(z),, W_{3i}(z)$, Introduced in Sec-	107
tions 55 and 56	172
LIST OF PAPERS BY THE AUTHOR, CONNECTED WITH THE PRESENT	
MONOGRAPH	174