Contents Foreword v List of contributors xii Preface xiii #### 1 Strange attractors and quasiattractors 1 V S Afraimovich and L P Shil'nikov - 1.1 Introduction 1 - 1.2 Statement of the problem 11 - 1.3 Structure of a nonwandering set—basic results 17 - 1.4 Lorenz attractors—lacunae 22 - 1.5 Quasiattractors 27 References 31 # Resonance phenomena for two-parameter families of maps of the plane: uniqueness and nonuniqueness of rotation numbers 35 D G Aronson, M. A. Chory, G R Hall and R P McGehee - 2.1 Observations on a one-parameter family 35 - 2.2 Embedding in a two-parameter family 40 - 2.3 Criteria for uniqueness and nonuniqueness of rotation number 42 Acknowledgements 46 References 46 ## 3 Selfsimilar turbulence propagation from an instantaneous plane source 48 G I Barenblatt - 3.1 Statement of the problem 48 - 3.2 Exact solution for the limiting case of lack of dissipation 51 | 3.4 | Solution for the case of a finite dissipation—selfsimilar intermediate asymptotics 52 Effect of stratification 56 Conclusion 59 References 59 | | | |---|--|--|--| | Transition to stochasticity of viscous flow between rotating spheres 61 Yu N Belayev and I M Yavorskaya | | | | | 4.2 | Theoretical and experimental background 61 Spectral and correlation analysis 63 Comparison with other flows—discussion 68 References 69 | | | | | istical properties of Lorenz attractors 71 Bunimovich | | | | 5.2 | Introduction—ergodic theory of dissipative systems 71 The Lorenz system and its simplest properties 73 Symbolic dynamics for the Lorenz attractor and some auxiliary assertions 77 | | | | | Estimation of the correlation function decay 83 The central limit theorem 86 Acknowledgements 90 References 91 | | | | An example of direct bifurcation into a turbulent state 93 F H Busse | | | | | 6.2
6.3
6.4 | Introduction 93 Mathematical formulation 94 Initial value problem 96 Statistical limit cycle 98 Discussion 99 References 100 | | | | Universal behaviour in nonlinear systems 101 M J Feigenbaum | | | | | 7.2
7.3
7.4
7.5
7.6 | Introduction 101 Functional iteration 103 Fixed-point behaviour of functional iterations 105 Period 2 from the fixed point 107 Period doubling ad infinitum 114 The universal limit of high iterates 117 Some details of the full theory 119 | | | 7.8 Universal behaviour in higher dimensional systems 128 | References 138 | |---| | Asymptotic numerical analysis for the Navier-Stokes equations 139 C Foias and R Temam | | 8.1 Introduction 139 8.2 Notation and recapitulation of results 139 8.3 Approximation in the subspaces V_m 142 8.4 Approximation in a general subspace 145 8.5 Time-periodic solutions 149 8.6 Comment on the Galerkin approximation 151 References 154 | | Recent experiments on the transition to turbulent convection 156 $J\ P\ Gollub$ | | 9.1 Introduction 156 9.2 New methods 157 9.3 Small aspect ratio convection 158 9.4 Large aspect ratio convection 163 9.5 Conclusion 169 References 169 | | Homoclinic orbits, subharmonics and global bifurcations in forced oscillations 172 B D Greenspan and P J Holmes | | 10.1 Introduction—a physical example 172 10.2 Poincaré maps and invariant manifolds 175 10.3 Perturbations of integrable systems—Melnikov's method 178 10.4 Global bifurcations of duffing's equation 188 | | 10.5 Smale horseshoes, Newhouse sinks and chaotic motions 193 10.6 Global structure of solutions of Duffing's equation 198 Appendix: Invariant manifolds and the lambda Lemma 210 Acknowledgement 211 References 211 | | A review of interactions of Hopf and steady-state bifurcations 215
W F Langford | 7.9 Universal behaviour in differential systems 129 7.10 Onset of turbulence 135 11.1 Introduction 215 11.2 Preliminaries 216 11.3 Elementary bifurcations 217 11.4 Interactions of steady-state and Hopf bifurcations 222 8 10 | 11.5 | Conclusion | 234 | 9 | |------|-----------------|-----|-----| | | Acknowledgement | | 235 | | | References | 235 | | ## 12 Bifurcations and chaos in the system of Taylor vortices—laboratory and numerical experiment 238 V S L'vov, A A Predtechensky and A I Chernykh - 12.1 Introduction 238 - 12.2 Formation of Taylor vortices 240 - 12.3 Power spectrum evolution 241 - 12.4 Breakdown of azimuthal wave coherence 243 - 12.5 Phenomenological model of the system of interacting Taylor vortices 246 - 12.6 Complicated behaviour of the system of interacting Taylor Vortices: numerical experiments 252 - 12.7 Statistical properties of trajectories in the phenomenological model 256 - 12.8 Statistical description of the system of interacting Taylor vortices in the direct interaction approximation 265 - 12.9 Evolution of the attractor structure with increasing Reynolds number 272 - 12.10 Concluding remarks 276 Appendix 277 Acknowledgements 278 References 279 ## 13 Hyperbolic attractors of differentiable dynamical systems 281 R V Plykin - 13.1 Introduction 281 - 13.2 Preliminaries and statement of basic results 282 - 13.3 Theorem on invariant foliations 292 Note on the proofs of the theorems 293 Acknowledgements 293 References 293 #### 14 The intermittent transition to turbulence 295 Y Pomeau - 14.1 Introduction 295 - 14.2 General description of intermittent transitions 296 - 14.3 Final remarks 302 References 303 | 15 | Resonance and bifurcation in Hopf-Landau dynamical systems 305
George R Sell | | | | |-----------|---|--|--|--| | | 15.1 Background 305 15.2 Normal singularity 307 15.3 Hopf-Landau dynamical systems 308 15.4 Open problems 311 Acknowledgements 312 References 312 | | | | | 16 | Distinguishing deterministic and random systems 314 F Takens | | | | | | 16.1 Introduction 314 16.2 Dynamical systems or compact metric spaces 321 16.3 Dynamical systems with an observable 325 16.4 Examples 327 References 332 | | | | | 17 | Energy-conserving Galerkin approximations for the Bénard problem 334 $Y\ M\ Treve$ | | | | | | 17.1 Introduction 334 17.2 Equations of the Boussinesq model of Bénard convection 335 17.3 Energy-conserving Galerkin approximations 337 17.4 Properties of the G^(k)'s 339 17.5 Concluding remarks 341 Appendix 341 Acknowledgements 341 References 342 | | | | | 18 | Stochasticity of the dynamical systems and the distribution of eigenvalues 343 G M Zaslavsky | | | | | | 18.1 Introduction 343 18.2 Some definitions and assumptions 344 18.3 Historical observations 344 18.4 Statement of the problem 346 18.5 Billiard-type stochastic systems 347 18.6 Universality of systems with mixing 352 18.7 Basic results 353 18.8 Proof of the basic result 353 | | | | Acknowledgements 356 References 356