Contents

Foreword v
List of contributors xii
Preface xiii

1 Strange attractors and quasiattractors 1

V S Afraimovich and L P Shil'nikov

- 1.1 Introduction 1
- 1.2 Statement of the problem 11
- 1.3 Structure of a nonwandering set—basic results 17
- 1.4 Lorenz attractors—lacunae 22
- 1.5 Quasiattractors 27 References 31

Resonance phenomena for two-parameter families of maps of the plane: uniqueness and nonuniqueness of rotation numbers 35 D G Aronson, M. A. Chory, G R Hall and R P McGehee

- 2.1 Observations on a one-parameter family 35
- 2.2 Embedding in a two-parameter family 40
- 2.3 Criteria for uniqueness and nonuniqueness of rotation number 42
 Acknowledgements 46
 References 46

3 Selfsimilar turbulence propagation from an instantaneous plane source 48

G I Barenblatt

- 3.1 Statement of the problem 48
- 3.2 Exact solution for the limiting case of lack of dissipation 51

3.4	Solution for the case of a finite dissipation—selfsimilar intermediate asymptotics 52 Effect of stratification 56 Conclusion 59 References 59		
Transition to stochasticity of viscous flow between rotating spheres 61 Yu N Belayev and I M Yavorskaya			
4.2	Theoretical and experimental background 61 Spectral and correlation analysis 63 Comparison with other flows—discussion 68 References 69		
	istical properties of Lorenz attractors 71 Bunimovich		
5.2	Introduction—ergodic theory of dissipative systems 71 The Lorenz system and its simplest properties 73 Symbolic dynamics for the Lorenz attractor and some auxiliary assertions 77		
	Estimation of the correlation function decay 83 The central limit theorem 86 Acknowledgements 90 References 91		
An example of direct bifurcation into a turbulent state 93 F H Busse			
6.2 6.3 6.4	Introduction 93 Mathematical formulation 94 Initial value problem 96 Statistical limit cycle 98 Discussion 99 References 100		
Universal behaviour in nonlinear systems 101 M J Feigenbaum			
7.2 7.3 7.4 7.5 7.6	Introduction 101 Functional iteration 103 Fixed-point behaviour of functional iterations 105 Period 2 from the fixed point 107 Period doubling ad infinitum 114 The universal limit of high iterates 117 Some details of the full theory 119		

7.8 Universal behaviour in higher dimensional systems 128

References 138
Asymptotic numerical analysis for the Navier-Stokes equations 139 C Foias and R Temam
 8.1 Introduction 139 8.2 Notation and recapitulation of results 139 8.3 Approximation in the subspaces V_m 142 8.4 Approximation in a general subspace 145 8.5 Time-periodic solutions 149 8.6 Comment on the Galerkin approximation 151 References 154
Recent experiments on the transition to turbulent convection 156 $J\ P\ Gollub$
 9.1 Introduction 156 9.2 New methods 157 9.3 Small aspect ratio convection 158 9.4 Large aspect ratio convection 163 9.5 Conclusion 169 References 169
Homoclinic orbits, subharmonics and global bifurcations in forced oscillations 172 B D Greenspan and P J Holmes
 10.1 Introduction—a physical example 172 10.2 Poincaré maps and invariant manifolds 175 10.3 Perturbations of integrable systems—Melnikov's method 178 10.4 Global bifurcations of duffing's equation 188
 10.5 Smale horseshoes, Newhouse sinks and chaotic motions 193 10.6 Global structure of solutions of Duffing's equation 198 Appendix: Invariant manifolds and the lambda Lemma 210 Acknowledgement 211 References 211
A review of interactions of Hopf and steady-state bifurcations 215 W F Langford

7.9 Universal behaviour in differential systems 129

7.10 Onset of turbulence 135

11.1 Introduction 215

11.2 Preliminaries 216

11.3 Elementary bifurcations 217

11.4 Interactions of steady-state and Hopf bifurcations 222

8

10

11.5	Conclusion	234	9
	Acknowledgement		235
	References	235	

12 Bifurcations and chaos in the system of Taylor vortices—laboratory and numerical experiment 238

V S L'vov, A A Predtechensky and A I Chernykh

- 12.1 Introduction 238
- 12.2 Formation of Taylor vortices 240
- 12.3 Power spectrum evolution 241
- 12.4 Breakdown of azimuthal wave coherence 243
- 12.5 Phenomenological model of the system of interacting Taylor vortices 246
- 12.6 Complicated behaviour of the system of interacting Taylor Vortices: numerical experiments 252
- 12.7 Statistical properties of trajectories in the phenomenological model 256
- 12.8 Statistical description of the system of interacting Taylor vortices in the direct interaction approximation 265
- 12.9 Evolution of the attractor structure with increasing Reynolds number 272
- 12.10 Concluding remarks 276
 Appendix 277
 Acknowledgements 278
 References 279

13 Hyperbolic attractors of differentiable dynamical systems 281 R V Plykin

- 13.1 Introduction 281
- 13.2 Preliminaries and statement of basic results 282
- 13.3 Theorem on invariant foliations 292
 Note on the proofs of the theorems 293
 Acknowledgements 293
 References 293

14 The intermittent transition to turbulence 295

Y Pomeau

- 14.1 Introduction 295
- 14.2 General description of intermittent transitions 296
- 14.3 Final remarks 302 References 303

15	Resonance and bifurcation in Hopf-Landau dynamical systems 305 George R Sell			
	 15.1 Background 305 15.2 Normal singularity 307 15.3 Hopf-Landau dynamical systems 308 15.4 Open problems 311 Acknowledgements 312 References 312 			
16	Distinguishing deterministic and random systems 314 F Takens			
	 16.1 Introduction 314 16.2 Dynamical systems or compact metric spaces 321 16.3 Dynamical systems with an observable 325 16.4 Examples 327 References 332 			
17	Energy-conserving Galerkin approximations for the Bénard problem 334 $Y\ M\ Treve$			
	 17.1 Introduction 334 17.2 Equations of the Boussinesq model of Bénard convection 335 17.3 Energy-conserving Galerkin approximations 337 17.4 Properties of the G^(k)'s 339 17.5 Concluding remarks 341 Appendix 341 Acknowledgements 341 References 342 			
18	Stochasticity of the dynamical systems and the distribution of eigenvalues 343 G M Zaslavsky			
	18.1 Introduction 343 18.2 Some definitions and assumptions 344 18.3 Historical observations 344 18.4 Statement of the problem 346 18.5 Billiard-type stochastic systems 347 18.6 Universality of systems with mixing 352 18.7 Basic results 353 18.8 Proof of the basic result 353			

Acknowledgements 356 References 356