Contents

Preface

1.	Vectors and Tensors	1
<i>1-1</i> .	$The\ Plane$	1
	TWO-DIMENSIONAL VECTORS	1
	MULTIPLICATION BY A REAL NUMBER, ADDITION, AND SUBTRACTION	2
	SCALAR PRODUCT	4
	COORDINATE SYSTEMS	5
	ANALYTIC GEOMETRY	7
	CHANGING SYSTEM OF COORDINATES	9
<i>1-2</i> .	The Space of Three Dimensions	14
	THREE-DIMENSIONAL VECTORS	14
	VECTOR PRODUCT	14
	COORDINATE SYSTEMS	16
	ANALYTIC GEOMETRY	18
	SOME VECTOR IDENTITIES	20
	CHANGING SYSTEM OF COORDINATES	21
<i>1-3</i> .	Vectors and Scalars	25
	PLANE GEOMETRY AS A SPECIAL CASE OF SOLID GEOMETRY	25
	REPRESENTATION OF VECTORS	25
	SCALARS. THE SCALAR PRODUCT	26
	VECTORS. THE VECTOR PRODUCT	27
1-4.	N-Dimensional Vectors	28
	DEFINITION OF A VECTOR	28
	VECTOR OPERATIONS	29
	LINEAR INDEPENDENCE	30
	BASES OF A VECTOR SYSTEM	32
	LINEAR VECTOR SPACES	33
1-5	Determinants	35

viii		Contents
	DEFINITION OF A DETERMINANT	35
	COFACTOR AND COMPLEMENTARY MINOR	38
	RULES FOR DETERMINANTS	40
<i>1-6</i> .	Linear Equations	43
	FORMULATIONS OF THE PROBLEM	43
	SOLUTIONS IN A SPECIAL CASE	44
	HOMOGENEOUS EQUATIONS	45
1-7.	Matrices	47
	VECTORS IN MATRIX NOTATION	47
	LINEAR VECTOR FUNCTIONS	48
	OPERATIONS WITH SQUARE MATRICES	51
	OPERATIONS WITH MATRICES IN GENERAL	53
	SPECIAL MATRICES	54
	INVERSE MATRICES	56
	ORTHOGONAL MATRICES	58
	ORTHOGONAL MATRICES OF ORDERS TWO AND THREE	59
1-8.	Vectors and Tensors	64
	COORDINATE TRANSFORMATIONS IN TWO AND THREE DIMENSIONS	64
	coordinate transformations in N dimensions	65
	VECTORS	66
	TENSORS	67
	THE TWO USES OF SQUARE MATRICES	70
	SOME GENERAL REMARKS	72
<i>1-9</i> .	Diagonalization	73
	FORMULATION OF THE PROBLEM	73
	THE EIGENVALUE PROBLEM	75
	SOLUTION OF THE PROBLEM	75
	SIMILAR MATRICES	76
	MATRIX FUNCTIONS	77
	REDUCTION OF QUADRATIC FORMS IN TWO DIMENSIONS	78
	REDUCTION OF QUADRATIC FORMS IN THREE DIMENSIONS	82
<i>1-10</i> .	Complex Numbers	87
	OPERATIONS WITH COMPLEX NUMBERS	87
	COMPLEX ROOTS OF POLYNOMIALS	88
	COMPLEX MATRICES	90
	LINEAR EQUATIONS WITH COMPLEX NUMBERS	91
2.	Groups and Group Representations	93
2-1.	Introduction	93
	THE GROUP CONCEPT	93
	FINITE GROUPS	94
	INFINITE GROUPS	97
	SUBGROUPS	98
	ISOMORPHISM. ABSTRACT GROUPS	98
<i>2-2</i> .	Finite Abstract Groups	102
	THE ORDER OF AN ELEMENT	102

Contents	ix
----------	----

	FINITE SUBGROUPS	103
	SETS OF GENERATORS AND DEFINING RELATIONS	104
	THE DIRECT PRODUCT OF TWO GROUPS	105
	CLASSES OF CONJUGATE ELEMENTS	107
2-3.	Group Representations	108
	EQUIVALENT REPRESENTATIONS	110
	IRREDUCIBLE REPRESENTATIONS	111
	UNITARY REPRESENTATIONS	113
	CHARACTERS	118
2-4.	Some Important Finite Groups	123
	THE CYCLIC AND THE DIHEDRAL GROUPS	123
	PERMUTATION GROUPS	125
	SURVEY OF GROUPS UP TO ORDER 8	126
	AN APPLICATION OF GROUP THEORY	128
		84
<i>3</i> .	Functions of One Variable	131
3-1	Real-Valued Functions of One Real Variable	131
0 1.	THE NOTION OF A FUNCTION	131
	REAL FUNCTIONS	132
	SEQUENCES	134
	LIMITS OF FUNCTIONS	134
	CONTINUITY OF FUNCTIONS	137
	VANISHING FUNCTIONS	138
<i>3-2.</i>	Definite Integrals	139
υ- <i>ω</i> .	DEFINITION OF A DEFINITE INTEGRAL	139
	A GEOMETRIC INTERPRETATION	140
	SOME RULES FOR DEFINITE INTEGRALS	142
	THE MEAN VALUE THEOREM FOR INTEGRALS	143
<i>3-3</i> .	Differentiable Functions	144
<i>0-0</i> .	DEFINITION OF A DERIVATIVE	144
	RULES FOR DIFFERENTIATION	146
	DIFFERENTIALS	148
		149
	COMPOSITE FUNCTIONS	150
	INVERSE FUNCTIONS THE MEAN MALLE THEODEM FOR DEDINATIVES	150
<i>3-4</i> .	THE MEAN VALUE THEOREM FOR DERIVATIVES Indefinite Integrals	155
J-4.		155
	EXISTENCE OF PRIMITIVE FUNCTIONS	156
	A FUNDAMENTAL THEOREM INTEGRATION FORMULAS	156 156
	INTEGRATION FORMULAS	150 158
2 5	DEFINITE INTEGRALS Taulor's Formula	158 160
<i>3-5</i> .	Taylor's Formula	161
	AN APPLICATION OF TAYLOR'S FORMULA	161 162
	ANOTHER FORM OF TAYLOR'S FORMULA L'HÔPITAL'S RULE	104
	D MURITAL S BULK	100

x	Contents
V.V.	~~.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

<i>3-6</i> .	Inverses of the Trigonometric Functions	165
	THE TRIGONOMETRIC FUNCTIONS	165
	THE FUNCTION ARC COSINE	167
	THE FUNCTION ARC SINE	169
	THE FUNCTION ARC TANGENT	170
	THE FUNCTION ARC COTANGENT	171
	SOME INDEFINITE INTEGRALS	172
3-7.	Logarithmic Functions	173
	THE NATURAL LOGARITHM	173
	OTHER LOGARITHMIC FUNCTIONS	175
	THE LOGARITHMIC SCALE	176
	SEMILOGARITHMIC PAPER	177
	USE OF SEMILOGARITHMIC PAPER	178
<i>3-8</i> .	Exponential Functions	179
J-0.		179
	INVERSES OF THE LOGARITHMIC FUNCTIONS	180
	THE FUNCTION e^x	181
20	EXPONENTIAL FUNCTIONS AND SEMILOGARITHMIC PAPER	(
<i>3-9</i> .	Power Functions	183
	POWER FUNCTIONS	183
	LOGARITHMIC PAPER	184
	BEHAVIOR OF SOME IMPORTANT FUNCTIONS AS $x \to \infty$	185
<i>3-10</i> .	Hyperbolic Functions	187
	AN INVERSE OF COSH	188
	THE INVERSE OF SINH	189
	THE INVERSES OF TANH AND COTH	191
<i>3-11</i> .	Indefinite Integration	193
	INTEGRATION OF RATIONAL FUNCTIONS	193
	INTEGRATION OF ROOT EXPRESSIONS	194
	INTEGRATION LEADING TO INTRODUCTION OF NEW FUNCTIONS	195
3-12.	Definite Integration	197
	IMPROPER INTEGRALS	197
	THE GAMMA FUNCTION	199
<i>3-13</i> .	Mathematics in Science	201
•	RIGORISM AND MATHEMATICS	201
	FURTHER EXAMPLES	202
3-14	Vector-Valued Functions of One Real Variable	204
0 2 7.	VECTOR FUNCTIONS	204
	GRAPHS OF VECTOR FUNCTIONS	205
		206
	VECTOR SEQUENCES CONTINUITY OF VECTOR FUNCTIONS	207
		208
	DIFFERENTIABILITY OF VECTOR FUNCTIONS	209
	TAYLOR'S FORMULA	211
	ARC LENGTH	212
0 4-	MOTION OF A PARTICLE	214
<i>3-15</i> .	Polar Coordinates	214
	COORDINATE SYSTEMS	214 214
	PLANE POLAR COORDINATES	214 015
	EQUATIONS IN POLAR COORDINATES	215

/Y	
Contents	$oldsymbol{x}ar{\iota}$
C 0 1000 1000	

	INFINITESIMAL CONSIDERATIONS	216
	SPHERICAL COORDINATES	218
2.40	CYLINDRICAL COORDINATES	219
J-10.	Complex-Valued Functions	220
	COMPLEX NUMBERS AND POLAR COORDINATES	$\frac{220}{221}$
	COMPLEX VALUED FUNCTIONS OF ONE DEAL WARRANTE	222
	COMPLEX-VALUED FUNCTIONS OF ONE REAL VARIABLE THE COMPLEX EXPONENTIAL FUNCTION	223
	THE COMPLEX EXPONENTIAL FUNCTION	
4.	Functions of Several Variables	225
4-1	Real-Valued Functions of Several Real Variables	225
	LIMITS	227
	CONTINUITY	228
4-2 .	Differentiable Functions of Several Real Variables	230
	PARTIAL DERIVATIVES	230
	DIFFERENTIABILITY	23]
	A SUFFICIENT CONDITION FOR DIFFERENTIABILITY	232
	THE TOTAL DIFFERENTIAL	233
	GENERALIZATION TO SEVERAL VARIABLES	235
	COMPOSITE FUNCTIONS	235
	DIRECTIONAL DERIVATIVES	237
	HOMOGENEOUS FUNCTION	238
	LEIBNIZ' RULE	239
<i>4-3</i> .	Taylor's Formula	240
	PARTIAL DERIVATIVES OF HIGHER ORDER	240
	TAYLOR'S FORMULA FOR FUNCTIONS OF TWO VARIABLES	242
	EXTREME VALUES OF FUNCTIONS OF TWO VARIABLES	243
4-4.		$\begin{array}{c} 248 \\ 248 \end{array}$
	PRIMITIVE FUNCTIONS OF TWO VARIABLES	240 248
	A NECESSARY CONDITION	240 251
	INTEGRATING FACTORS CENERALIZATIONS TO SEVERAL WARLANDERS	251
4-5	GENERALIZATIONS TO SEVERAL VARIABLES Line Integrals	252 253
4 -0.	DEFINITION OF THE LINE INTEGRAL	254
	LINE INTEGRALS AND TOTAL DIFFERENTIALS	258
	APPLICATIONS OF LINE INTEGRALS IN THERMODYNAMICS	259
	GENERALIZATION TO SEVERAL VARIABLES	262
	APPLICATIONS OF LINE INTEGRALS IN MECHANICS	263
<i>4-6</i> .	Double Integrals	266
	DEFINITION OF A DOUBLE INTEGRAL	266
	REDUCTION IN RIGHT-ANGLED COORDINATES	267
	REDUCTION IN POLAR COORDINATES	272
	GREEN'S THEOREM	278
	APPLICATIONS OF DOUBLE INTEGRALS	280
4-7.	Triple Integrals	282
	DEFINITION OF A TRIPLE INTEGRAL	282

xii		Contents
	REDUCTION IN RIGHT-ANGLED COORDINATES	283
	REDUCTION IN CYLINDRICAL COORDINATES	286
	REDUCTION IN SPHERICAL COORDINATES	288
	CHANGE OF VARIABLES IN TRIPLE INTEGRALS	291
	A MISUSE OF INFINITESIMALS	294
4-8.	Surface Integrals	296
	DEFINITION OF A SURFACE INTEGRAL	296
	EVALUATION OF SURFACE INTEGRALS	297
4-9.	Vector Analysis	299
	SCALAR AND VECTOR FIELDS	299
	DIFFERENT REPRESENTATIONS OF A GIVEN FIELD	300
	THE GRADIENT FIELD	301
	GEOMETRIC INTERPRETATION OF THE GRADIENT VECTOR	302
	THE DIVERGENCE AND THE ROTATION OF A VECTOR FIELD	304
	RELATIONSHIPS BETWEEN THE FIELDS INTRODUCED	304
	GAUSS' THEOREM	305
	APPLICATION OF GAUSS' THEOREM	306
	STOKES' THEOREM	308
	TOTAL DIFFERENTIALS IN THREE VARIABLES	309
/1-10	Vector-Valued Functions of Two Real Variables	311
4-10.	CONTINUOUS VECTOR FUNCTIONS	311
	DIFFERENTIABLE VECTOR FUNCTIONS	313
	DIFFERENTIABLE VECTOR FUNCTIONS DIFFERENTIABLE SURFACES	314
	AREA OF A DIFFERENTIABLE SURFACE	316
5.	Infinite Series	319
<i>5-1</i> .	Series with Constant Terms	316
	THE NOTION OF AN INFINITE SERIES	319
	CONVERGENCE OF SERIES WITH POSITIVE TERMS	321
	CONVERGENCE OF AN ARBITRARY SERIES	323
	OPERATIONS WITH CONVERGENT SERIES	326
	INFINITE PRODUCTS	327
5-2.	Series with Variable Terms	330
	UNIFORM CONVERGENCE	330
<i>5-3</i> .	Power Series	331
	CONVERGENCE OF POWER SERIES	331
	ANALYTIC FUNCTIONS	333
5-4	The Laplace Transformation and the Gamma Function	336
0 4.	LAPLACE TRANSFORMS	336
	APPLICATIONS OF THE LAPLACE TRANSFORMS	339
	THE GAMMA FUNCTION	340
<i>5</i> - <i>5</i> .	Orthogonal Systems of Functions	343
<i>0−0</i> .	Orthogonal Systems of Functions ORTHOGONAL FUNCTIONS AND SERIES EXPANSIONS	343
		345
5 C	CONVERGENCE OF THE SERIES	347
J-0.	Fourier Series	347
	TRIGONOMETRIC FOURIER SERIES	011

Conte	ontents	
	EXPONENTIAL FOURIER SERIES	349
5-7.	Legendre Polynomials	351
	APPLICATION OF LEGENDRE POLYNOMIALS TO CURVE FITTING	354
	APPLICATION OF LEGENDRE POLYNOMIALS IN DESCRIBING FIELDS	355
5-8.	Fourier Transformations	357
5.75 BPT. 03	EXPONENTIAL FOURIER TRANSFORMS	357
	OTHER FOURIER TRANSFORMS	359
		0:50.214:01.50
6.	Differential Equations	363
<i>6-1</i> .	Ordinary Differential Equations of the First Order	363
	SOME DEFINITIONS	363
	AN EXISTENCE AND UNIQUENESS THEOREM	364
	DIFFERENTIAL EQUATIONS ON DIFFERENTIAL FORM	366
	TOTAL DIFFERENTIALS AND INTEGRATING FACTORS	368
	THE LINEAR DIFFERENTIAL EQUATION OF THE FIRST ORDER	370
	SETTING UP DIFFERENTIAL EQUATIONS	371
<i>6-2</i> .	Ordinary Differential Equations of the Second Order	375
	THE HOMOGENEOUS LINEAR DIFFERENTIAL EQUATION OF THE	
	SECOND ORDER	375
	THE INHOMOGENEOUS LINEAR DIFFERENTIAL EQUATION OF THE	
	SECOND ORDER	378
	EQUATIONS WITH CONSTANT COEFFICIENTS	379
	EULER'S DIFFERENTIAL EQUATION	382
<i>6-3</i> .	Coupled Differential Equations	384
	SOLUTION BY ITERATION	384
	EQUATIONS WITH CONSTANT COEFFICIENTS	385
	AN EXAMPLE FROM CLASSICAL MECHANICS	388
	NONLINEAR COUPLED FIRST-ORDER EQUATIONS	389
6-4.	Solution by Series Expansion	394
	$Eigenvalue\ Problems$	396
	BOUNDARY VALUE PROBLEMS	396
	HERMITIAN OPERATORS	398
	RITZ' VARIATIONAL METHOD	400
<i>6-6</i> .	Calculus of Variations	404
	EULER'S EQUATION	404
	AN APPLICATION IN CLASSICAL MECHANICS	408
	ISOPERIMETRIC PROBLEMS	410
	THE INVERSE PROBLEM	413
6-7.	Partial Differential Equations	415
(2) E S		
7.	Complex Functions	423
7-1.	Complex-Valued Functions of One Complex Variable	423
ema Romania	COMPLEX NUMBERS	423
	SEQUENCES AND SERIES	424

xiv		Contents
	LIMITS AND CONTINUITY	426
<i>7-2</i> .	Differentiation and Integration	429
	DERIVATIVES AND DIFFERENTIALS	429
	INTEGRALS	432
	ANALYTIC FUNCTIONS	436
	POWER SERIES	438
	INVERSE FUNCTIONS	439
<i>7-3</i> .	Integration and Series Expansions	441
	CAUCHY'S INTEGRAL FORMULA	441
	THE TAYLOR EXPANSION	443
	THE LAURENT EXPANSION	444
	RESIDUES	446
8.	Numerical Analysis	451
8-1.	Interpolation	451
	PROBLEMS IN NUMERICAL ANALYSIS	451
	LAGRANGE'S INTERPOLATION FORMULA	452
	NEWTON'S FORMULA	454
	AITKEN'S METHOD	459
8-2.	Differentiation and Integration	460
	NUMERICAL DIFFERENTIATION	460
	NUMERICAL INTEGRATION	462
<i>8-3</i> .	Asymptotic Formulas for Integrals	465
	ASYMPTOTIC METHODS	465
8-4.	Symbolic Calculus with Differences	467
	THE DIFFERENCE OPERATORS	467
	THE EULER-MACLAURIN FORMULA	470
	EULER'S METHOD	474
<i>8-5</i> .	Solution of Equations	476
	EXACT SOLUTION OF QUADRATIC AND CUBIC EQUATIONS	476
	ESTIMATION OF THE ROOTS OF EQUATIONS	477
	ITERATIVE PROCESSES. THE NEWTON-RAPHSON METHOD	478
<i>8-6</i> .	Numerical Solution of Differential Equations	482
	FIRST-ORDER EQUATIONS	482
	SECOND-ORDER EQUATIONS	484
<i>8-7</i> .	Numerical Analysis of Experimental Data	486

Index