CONTENTS

Preface

1	Diffeomorphisms and flows	1
1.1	Introduction	1
1.2	Elementary dynamics of diffeomorphisms	5
	1.2.1 Definitions	5
	1.2.2 Diffeomorphisms of the circle	6
1.3	Flows and differential equations	11
1.4	Invariant sets	16
1.5	Conjugacy	20
1.6	Equivalence of flows	28
1.7	Poincaré maps and suspensions	33
1.8	Periodic non-autonomous systems	38
1.9	Hamiltonian flows and Poincaré maps	42
	Exercises	56
2	Local properties of flows and diffeomorphisms	64
2.1	Hyperbolic linear diffeomorphisms and flows	64
2.2	Hyperbolic non-linear fixed points	67
	2.2.1 Diffeomorphisms	68
	2.2.2 Flows	69
2.3	Normal forms for vector fields	72
2.4	Non-hyperbolic singular points of vector fields	79
2.5	Normal forms for diffeomorphisms	83
2.6	Time-dependent normal forms	89
2.7	Centre manifolds	93
2.8	Blowing-up techniques on \mathbb{R}^2	102
	2.8.1 Polar blowing-up	102
	2.8.2 Directional blowing-up	105
	Exercises	108
3	Structural stability, hyperbolicity and homoclinic points	119
3.1	Structural stability of linear systems	120
	Local structural stability	123
3.3	Flows on two-dimensional manifolds	125
3 4	Anosov diffeomorphisms	132

Contents

3.5	Horseshoe diffeomorphisms	138
	3.5.1 The canonical example	139
	3.5.2 Dynamics on symbol sequences	147
	3.5.3 Symbolic dynamics for the horseshoe diffeomorphism	149
3.6	Hyperbolic structure and basic sets	154
3.7	Homoclinic points	164
3.8	The Melnikov function	170
	Exercises	180
4	Local bifurcations I: planar vector fields and	
	diffeomorphisms on $\mathbb R$	190
4.1	Introduction	190
4.2	Saddle-node and Hopf bifurcations	199
	4.2.1 Saddle-node bifurcation	199
	4.2.2 Hopf bifurcation	203
4.3	Cusp and generalised Hopf bifurcations	206
	4.3.1 Cusp bifurcation	206
	4.3.2 Generalised Hopf bifurcations	211
4.4	Diffeomorphisms on R	215
	4.4.1 $D_x f(0) = +1$: the fold bifurcation	218
	4.4.2 $D_x f(0) = -1$: the flip bifurcation	221
4.5	The logistic map	226
	Exercises	234
5	Local bifurcations II: diffeomorphisms on \mathbb{R}^2	245
	Introduction	245
5.2	Arnold's circle map	248
	Irrational rotations	253
5.4	Rational rotations and weak resonance	258
5.5	Vector field approximations	262
	5.5.1 Irrational β	262
	5.5.2 Rational $\beta = p/q$, $q \ge 3$	264
	5.5.3 Rational $\beta = p/q$, $q = 1, 2$	268
5.6	Equivariant versal unfoldings for vector field approximations	271
	$5.6.1 \ q=2$	272
	$5.6.2 \ q = 3$	275
	$5.6.3 \ q = 4$	276
	$5.6.4 q \geqslant 5$	282
5.7	Unfoldings of rotations and shears	286
	Exercises	291
6	Area-preserving maps and their perturbations	302
	Introduction	302
	Rational rotation numbers and Birkhoff periodic points	309
	6.2.1 The Poincaré-Birkhoff Theorem	309
	6.2.2 Vector field approximations and island chains	310
6.3	Irrational rotation numbers and the KAM Theorem	319
	The Aubry-Mather Theorem	332
	6.4.1 Invariant Cantor sets for homeomorphisms on S ¹	332
	6.4.2 Twist homeomorphisms and Mather sets	335
6.5	Generic elliptic points	338
	Weakly dissipative systems and Birkhoff attractors	345

Contents

6.7	Birkhoff periodic orbits and Hopf bifurcations	355
6.8	Double invariant circle bifurcations in planar maps	368
	Exercises	379
	Hints for exercises	394
	References	413
	Index	417