

Contents

Preface	v
Background Notation	vii
CHAPTER 1	
Topology	1
1.1 Topological Spaces	2
1.2 Metric Spaces	9 14
1.3 Continuity	18
1.4 Subspaces, Products, and Quotients	24
1.5 Compactness 1.6 Connectedness	31
1.6 Connectedness 1.7 Baire Spaces	37
CHAPTER 2 Banach Spaces and Differential Calculus	40
2.1 Banach Spaces	40
2.2 Linear and Multilinear Mappings	. 56
2.3 The Derivative	75
2.4 Properties of the Derivative	83
2.5 The Inverse and Implicit Function Theorems	116
CHAPTER 3 Manifolds and Vector Bundles	141
3.1 Manifolds	141
3.1 Maintoids 3.2 Submanifolds, Products, and Mappings	150
3.2 Submanifolds, Froducts, and Wappings 3.3 The Tangent Bundle	157
3.4 Vector Bundles	167
3.5 Submersions, Immersions and Transversality	196
CHAPTER 4	
Vector Fields and Dynamical Systems	238
4.1 Vector Fields and Flows	238
4.2 Vector Fields as Differential Operators	265
4.3 An Introduction to Dynamical Systems	298
4.4 Frobenius' Theorem and Foliations	326
CHAPTER 5	220
Tensors	338
5.1 Tensors in Linear Spaces	338 349
5.2 The Lie Derivetive: Algebraic Approach	359
5.3 The Lie Derivative: Algebraic Approach	370
5.4 The Lie Derivative: Dynamic Approach	370 3 7 7
5.5 Partitions of Unity	511

CHAP	TER 6	
Diffe	rential Forms	392
6.1	Exterior Algebra	392
6.2	Determinants, Volumes, and the Hodge Star Operator	402
6.3	Differential Forms	417
6.4	The Exterior Derivative, Interior Product, and Lie Derivative	423
6.5	Orientation, Volume Elements, and the Codifferential	450
COLUMN TO SERVICE SERVICES	TER 7	
Integ	ration on Manifolds	464
7.1	The Definition of the Integral	464
7.2	Stokes' Theorem	476
7.3	The Classical Theorems of Green, Gauss, and Stokes	504
7.4	Induced Flows on Function Spaces and Ergodicity	513
7.5	Introduction to Hodge-deRham Theory and Topological Applications of	
	Differential Forms	538
СНАР	TER 8	
Appl	ications	560
8.1	Hamiltonian Mechanics	560
8.2	Fluid Mechanics	584
8.3	Electromagnetism	599
8.3	The Lie-Poisson Bracket in Continuum Mechanics and Plasma Physics	609
8.4	Constraints and Control	624
Refe	rences	631
Index		643
Supp	lementary Chapters—Available from the authors as they are prod	luced

- S-1 Lie Groups
- S-2 Introduction to Differential Topology
- S-3 Topics in Riemannian Geometry

