Contents

1	INTRODUCTION AND EXECUTIVE SUMMARY
	General Findings and Recommendations, 1
	Findings, 1
	Recommendations, 2
	Introduction, 3
	The Emergence of Plasma Physics, 3
	Classification of Plasmas, 6
	Fluid Physics, 8
	Principal Findings and Recommendations, 10
	General Plasma Physics, 10
	Fusion Plasma Confinement and Heating, 11
	Magnetic Confinement, 11
	Inertial Confinement, 13
	Space and Astrophysical Plasmas, 14
	Fluid Physics, 16
	Recent Accomplishments and Future Research
	Opportunities, 18
	General Plasma Physics, 18
	Significant Recent Accomplishments, 18; Future
	Research Opportunities, 19
	Fusion Plasma Confinement and Heating, 20

Significant Recent Accomplishments—Magnetic

	Magnetic Confinement, 22; Significant Recent	
	Accomplishments—Inertial Confinement, 24; Future	
	Research Opportunities—Inertial Confinement, 25	
	Space and Astrophysical Plasmas, 26;	
	Significant Recent Accomplishments, 26; Future	
	Research Opportunities, 27	
	Fluid Physics, 28	
	Significant Recent Accomplishments, 28; Future	
	Research Opportunities, 30	
	Funding and Manpower Resources, 32	
	Institutional Involvement, 32	
	General Plasma Physics, 32	
	Plasma Confinement and Heating, 33	
	Space and Astrophysical Plasmas, 34	
	Fluid Physics, 35	
2	FLUID PHYSICS	6
(1-8	Introduction and Overview, 36	_
	Significant Accomplishments and Opportunities in	
	Fluid Physics, 38	
	Significant Recent Accomplishments, 38	
	Significant Research Opportunities, 40	
	Findings and Recommendations, 42	
	Principal Findings, 42	
	Support Structure, 42; Computational Techniques, 43;	
	Instrumentation Techniques, 43; Education, 43	
	Principal Recommendations, 44	
	Research Support, 44; Education, 45	
	Government Support, Manpower, and University	
	Research, 45	
	Detailed Review of the Branches, Selected Topical	
	Subject Areas, and Technical Disciplines of	
	Fluid-Physics Research, 48	
	Branches of Fluid Physics, 48	
	Combustion and Reacting Flows, 48; Non-Newtonian	
	Fluids and Rheology, 51; Vortex-Dominated Flows, 53;	
	High-Speed Flows, 55; Molecular and Statistical	
	Phenomena, 56; Viscosity-Dominated Flows, 57;	
	Stability, 60; Turbulence, 62; Bouyancy-Driven	

Confinement, 20; Future Research Opportunities—

	Generation and Propagation, 69; Radiation	
	Hydrodynamics, 70; Porous Media, 72; Rotating	
	Phenomena, 73; Phase Change, 74 Topical Subject Areas, 76	
	Topical Subject Areas, 76 Aerodynamics, 76; Biofluid Dynamics, 81; Flows of	
	Electrically Conducting Fluids, 83; Geophysical Fluid	
	Dynamics, 84; Multiphase Flows, 86	
	Technical Disciplines, 88	
	Modeling and Analytical Methods, 88; Computational	
	Fluid Dynamics, 89; Experimental Methods, 91	
	Acknowledgments, 94	
3	GENERAL PLASMA PHYSICS	95
	Scope and Objectives of General Plasma Physics, 95))
	Intense Beams—Electrons, Ions, and Photons, 97	
	Development of Low-Impedance Multiterawatt	
	Machines, 98	
	Intense Ion Beams, 98	
	Development of High-Energy, High-Current	
	Machines, 99	
	Z-Pinch X-Ray Sources, 99	
	Propagation of Charged-Particle Beams in Gas	
	and Plasma, 99	
	Expectations and Recommendations for the Next	
	10 Years, 100	
	Collective Accelerators, 101	
	Space-Charge Accelerators, 102	
	Wave Accelerators, 102	
	Electron-Ring Accelerators, 102	
	Collective Focusing Accelerators, 103	
	Laser-Driven Accelerators, 103	
	Beat-Wave Accelerator, 104	
	Inverse Free-Electron-Laser Accelerator, 105	
	Grating Accelerator, 105	
	High-Gradient Structures, 105	
	Inverse Cerenkov Accelerator, 105	
	Cyclotron Resonant Accelerator, 105	

Motion, 66; Interface Phenomena, 67; Sound

Problem Areas, 106

Recommendations for the Next 10 Years, 106

Coherent, Free-Electron Radiation Sources, 107

Electromagnetic Wave-Plasma Interaction, 111

Scattering and Absorption of Electromagnetic

Waves by Plasmas, 111

Isotope Separation, 114

Nonlinear Phenomena in Plasmas, 116

Chaos in Hamiltonian Systems, 116

Soliton and Related Phenomena, 117

Strong Langmuir Turbulence, 118

Parametric Instabilities, 118

Magnetic Reconnection, 118

Turbulent Relaxation to Force-Free States, 119

Other Major Achievements in the Past Decade, 120

Plasma Theory Developments Related to Magnetic

Confinement, 120

Magnetic-Flux Geometries and Coordinate

Systems, 121

Single-Particle Orbits, 121

Coulomb Collisional Processes, 122

Macroscopic Equilibria, 122

Macroscopic Instabilities—Ideal

Magnetohydrodynamics, 122

Macroscopic Instabilities—Resistive

Magnetohydrodynamics, 123

Microscopic (Kinetic) Instabilities and Turbulent Transport, 123

Summary, 124

Atomic Physics in (and for) Plasmas, 124

Recent Progress, 125

Outstanding Research Problems, 126

Recommendations, 126

Training, 127

Funding Levels, 128

Recommended Funding Levels, 128

Plasma Diagnostics, 128

Laser Scattering, 130

Microwave Interferometry, 130 Spectroscopy, 130 Charge Exchange, 131 Neutrons and Alpha Particles, 131 Blackbody and Plasma-Well Interactions, 132 Heavy-Ion Diagnostics, 132 Time-Resolved Plasma Activity, 132 Scattering from Collective Fluctuations, 133 Data Acquisition and Instrumentation, 133 Desiderata, 134 Strongly Coupled Plasma Physics, 136 History, 136 Recent Progress, 138 Outlook for the Next 10 Years, 139 Nonneutral Plasmas, 140 FUSION PLASMA CONFINEMENT AND 144 **HEATING** Scope and Objectives of Fusion Plasma Research, 144 Introduction, 144 The Fusion Process, 146 Magnetic Confinement, 150 Inertial Confinement, 154 Tokamak and Stellarator Magnetic-Confinement Systems, 156 Introduction, 156 Major Advances, 161 Optimization of Experimental Performance, 161; Confinement, 163; Stability and Beta Limits, 166 Current Frontiers of Research, 168

Prospects for Future Advances, 171

Current Frontiers of Research, 176

Major Advances—the Tandem Mirror, 174

Potential Profile and Thermal Barriers, 178;

Microstability, 177; Axial Confinement: Control of the

Confinement: Particle Transport and Radial Potential

Macrostability: Equilibrium and Beta Limits, 181; Radial

Magnetic Mirror Systems, 172

Introduction, 172

Control, 183

Prospects for Future Advances in Mirror

Confinement, 184

Elmo Bumpy Torus, 185

Introduction, 185

Major Advances, 187

Current Frontiers of Research, 188

Prospects for Future Advances, 189

Reversed-Field Pinch, 190

Introduction, 190

Major Advances, 192

Current Frontiers of Research, 193

Prospects for Future Advances, 194

Compact Toroids, 195

Introduction, 195

Major Advances, 198

Spheromaks, 199; Field-Reversed Configurations, 201

Current Frontiers of Research, 201

Prospects for Future Advances, 203

Plasma Heating, 204

Introduction, 204

Radio-Frequency Heating, 204

Major Advances: Theory, 206; Major Advances:

Experiment, 207; Prospects for Future Advances, 210

Radio-Frequency Current Drive, 212

Major Advances: Theory, 213; Major Advances:

Experiment, 213; Prospects for Future Advances, 216

Neutral-Beam Heating, 216

Major Advances, 217; Prospects for Future Advances, 219

Inertial-Confinement Fusion Systems, 221

Introduction, 221

Major Advances, 224

Drivers for Inertial-Confinement Fusion, 224; Laser-Target Physics, 226

Current Frontiers of Research, 228

Laser-Plasma Coupling, 228; Heat Transport and Ablation, 231; Shell Acceleration, Uniformity, and

Hydrodynamic Instabilities, 233

Prospects for Future Advances, 235

Advanced Fusion Applications, 236

Funding of Fusion Plasma Research in the United States, 238
Principal Findings and Recommendations, 240
Magnetic Confinement, 240
Inertial Confinement, 241
Acknowledgments, 242
SPACE AND ASTROPHYSICAL PLASMAS 243
Principal Conclusions, 243
Principal Recommendations, 244
Introduction, 245
Relationship Between Laboratory, Space, and
Astrophysical Plasma Research, 246
Definition of Space and Astrophysical Plasma
Physics, 246
Relationship Between Laboratory and Space
Plasma Physics, 246
Relationship Between Space and Astrophysical
Plasma Research, 247 Magnetohydrodynamic Atmospheres and Winds, 248;
Planetary and Astrophysical Magnetospheres, 249; Magnetic-
Field Reconnection, 252; Particle Acceleration and
Cosmic Rays, 254
The Unifying Physical Problems, 255
Space and Astrophysical Plasma Physics in the Past
10 Years, 255
Problem 3: The Behavior of Large-Scale Plasma
Flows, 256 Planetery Magnetospheres, 256: Dynamics of the Forth's
Planetary Magnetospheres, 256; Dynamics of the Earth's Magnetosphere, 256; Magnetohydrodynamic Structures
in the Sun's Atmosphere and in the Solar Wind, 256;
Magnetospheres of Neutron Stars, 257; Magnetohydrodynamic
Jets, 257; General Relativistic Electrodynamics, 259
Problem 1: Reconnection, 259
Problem 2: Interaction of Turbulence with Magnetic
Fields, 259 Problem 4: Acceleration of Energetic Particles, 260
Problem 5: Particle Confinement and Transport, 261
Problem 6: Collisionless Shocks, 261
Problem 7: Beam-Plasma Interactions, and the
Generation of Radio Emissions, 262

Problem 8: Interactions Between Plasmas and Neutra	al
Gases, 262	
Space and Astrophysical Plasma Physics in the	
Next 10 Years, 263	
Impact of Research on Space and Astrophysical	
Plasmas, 264	
The Role of Space and Ground-Based Measurements	
and Observations, 266	
Solar-System Plasma Physics, 266	
Astrophysical Plasma Physics, 267	
In Situ Measurements near the Sun, 268	
Concluding Remarks, 269	
The Roles of Laboratory and Active Space	
Experiments, 269	
Laboratory Experiments, 269	
Active Space Experiments, 270	
The Role of Theory, 271	
Space Plasma Theory, 271	
Theoretical Astrophysics, 272	
The Role of Numerical Models and Simulations, 273	
Why Quantitative Models are Essential, 273	
System Models and Process Simulations in the	
Next Decade, 275	
System Models, 275; Process Simulations, 276; Overall	
Conclusions, 277	
Proposal for a Dedicated, Advanced Computational	
Program, 278	
The Role of Plasma Physics in the University	
Curriculum, 279	
Space Plasma Physics, 279	
Astrophysical Plasma Physics, 280	
Plasma Physics in General, 281	
References, 282	
GLOSSARY	28
INDEX	30