

Contents

	SUMMARY
1	A PROGRAM OF RESEARCH INITIATIVES 7
	The Nature of the Field, 7
	Organization of the Report, 8
	Introduction to the Research Initiatives, 9
	Initiative in Atomic Physics, 10
	Fundamental Tests and High-Precision Techniques, 10
	Many-Electron Dynamics, 14
	Transient States of Atomic Systems, 16
	Initiative in Molecular Physics, 18
	The Physics of Isolated Molecules, 18
	The Physics of Molecular Collisions, 22
	Initiative in Optical Physics, 23
	New Light Sources, 24
	Advanced Spectroscopy, 26
	Quantum Optics, 28
2	ATOMIC MOLECIII AD AND ODTICAL DUVEICE
4	ATOMIC, MOLECULAR, AND OPTICAL PHYSICS
	IN THE UNITED STATES TODAY
	Demographics of Atomic, Molecular, and Optical
	Physics, 29

	Size of the Field, 29	
	Employment, 30	
	Distribution of Effort, 30	
	The Educational Role of Atomic, Molecular, and	
	Optical Physics, 30	
	Scientific Interfaces and Applications, 31	
	The Economic Impact of Atomic, Molecular, and	
	Optical Physics, 33	
	The Health of the Field in the United States, 35	
3	RECOMMENDATIONS	37
	Background—The History of Support, 37	
	Comments, 38	
	A Plan of Action, 43	
	Recommendations, 45	
	Base Support, 45	
	Instrumentation, 46	
	Theory, 47	
	Access to Large Computers, 47	
	Special Facilities, 48	
	Accelerator-Based Atomic Physics, 48	
	Atomic, Molecular, and Optical Physics with	
	Synchrotron Radiation, 49	
	Relevance of Atomic, Molecular, and Optical	
	Research to the Funding Agencies, 50	
	Department of Defense, 50	
	Department of Energy, 51	
	National Science Foundation, 51	
	National Aeronautics and Space Administration, 52	
4	ATOMIC PHYSICS	53
	Elementary Atomic Physics, 53	
	Advances in Quantum Electrodynamics, 54	
	Magnetic Moment of the Electron and Positron, 55	
	Lamb Shift of Hydrogen, 57	
	Muonium and Positronium, 57	
	Muonic and Hadronic Atoms, 58	
	Time-Reversal Symmetry, 58	

Neutral-Current Parity Violations in Atomic
Physics, 59
Foundations of Quantum Theory: Is Quantum
Mechanics Complete? 60
Studies of Time and Space, 61
Future Directions, 62
Atomic Structure, 63
Loosely Bound Atomic States, 63
Atoms in Strong Fields, 66
Double-Well Atomic Potentials, 67
Collective Atomic States, 67
Relativistic and Quantum Electrodynamic Effects in
Atoms, 68
Atomic Dynamics, 70
Structure of the Electron Continuum, 70
Dielectronic Recombination, 73
Ultraslow Collisions, 74
Collisions with Rydberg Atoms, 75
Approximate Conservation Laws, 76
Toward the Complete Scattering Experiment, 77
Comparisons of Positron and Electron Scattering, 77
Accelerator-Based Atomic Physics, 78
Atomic Coherence and Out-of-Round Atoms, 79
Quantum Electrodynamics of Highly Charged
Systems, 79
Pair Production in Transient Superheavies, 80
Inner-Shell Molecular Orbitals and Molecular
Orbital X Rays, 81
Charge Transfer, 81
Slow-Recoil Ion Production, 82
Tunable X Rays, 83
Atomic Physics Requiring Larger Facilities, 83
Accelerator-Based Atomic Physics, 83
Atomic, Molecular, and Optical Physics with
Synchrotron Radiation, 86
MOLECULAR PHYSICS
The New Spectroscopy, 88

	New Views of Electronic Structure, 89	
	Electronic-Structure Theory: Ab Initio	
	Calculations, 92	
	Hydrogen-Bonded Molecules, 92	
	Vibrational Structure of Polyatomic Molecules, 93	
	Molecular Photoionization and Electron-Molecule	
	Scattering, 94	
	Molecular Photoionization, 95	
	Molecular Autoionization Dynamics, 95	
	Shape Resonances in Molecular Fields, 96	
	Resonant Multiphoton Ionization, 97	
	Electron-Molecule Collisions, 98	
	Molecular Dynamics, 99	
	State-to-State Chemistry, 100	
	Radiative Collisions, 102	
	New Ways to Understand the Dynamics of	
	Chemical Reactions, 103	
	Variational Transition-State Theory, 104	
	Quasi-classical Trajectory Calculations, 105	
	Approximate Quantum-Scattering Calculations, 105	
	Resonances in a Simple Reaction Complex, 105	
	Bond Breaking and "Half-Collisions," 106	
	Reactions at Very Low Temperatures, 107	
	Some Novel Molecular Species, 107	
	Molecular Ions, 108	
	Van der Waals Molecules, 109	
6	OPTICAL PHYSICS	110
	Lasers—The Revolution Continues, 110	
	Excimers and Excimer Lasers, 113	
	Laser Spectroscopy, 114	
	Ultraprecise Laser Spectroscopy, 115	
	Ultrasensitive Spectroscopy, 115	
	Doppler-Free Laser Spectroscopy, 116	
	Laser Cooling, 117	
	Coherent Optical Transients, 117	
	Ultranarrow Optical Transitions, 119	
	Coherent Raman Spectroscopy, 119	

	Quantum Optics and Coherence, 120
	Photon Antibunching, 120
	Optical Bistability, 121
	Squeezed States, 122
	Rydberg Atoms and Cavity Quantum
	Electrodynamics, 123
	Femtosecond Spectroscopy, 124
7	SCIENTIFIC INTERFACES
	Astrophysics, 126
	Atomic Processes, 128
	Rydberg Atoms, 128
	Interstellar Molecules, 129
	Astrophysical Chemistry, 130
	Cosmology, 130
	Space Physics, 131
	Condensed-Matter Physics and Materials Science, 132
	Light-Scattering Spectroscopy, 132
	Clusters, 134
	Ultranarrow Optical Transitions, 136
	Spin-Polarized Quantum Fluids, 136
	Surface Science, 138
	Molecular-Beam Surface Scattering, 138
	Metal Clusters, 139
	Studying Surfaces with Laser Light, 141
	The Role of Atomic, Molecular, and Optical
	Data in Surface Science, 142
	Plasma Physics, 143
	Atmospheric Physics, 144
	Nuclear Physics, 146
	Optical Studies of the Nucleus, 146
	Polarized Nuclear Sources, 149
	Dynamics at the Atom-Nuclear Frontier, 149
8	APPLICATIONS OF ATOMIC, MOLECULAR, AND
	OPTICAL PHYSICS
	Precision Measurement Techniques, 151
	Fusion, 155

xvi *CONTENTS*

Magnetic Confinement, 157	
Inertial Confinement, 158	
National Security, 159	
Fiber-Optics Communications, 162	
Manufacturing with Lasers, 164	
Materials Processing, 166	
Laser-Induced Surface Chemistry, 166	
Ion Implantation, 166	
Data-Base Services, 167	
Medical Physics, 169	
Laser Surgery, 169	
Magnetic-Resonance Whole-Body Imaging, 171	
	100
FURTHER READING	1/5
	100
INDEX	1//

