			u j
		25	
5%			

Contents of Volume 1

Part I Theory of the electromagnetic field

Cha	pter 1 General theory of the electromagnetic field	
§ 1	Problems of theoretical physics	1
2	The determination of the vector field from its integral char-	
	acteristics	3
3	Charges and particles	9
4	The field of charges at rest	11
5	The equation of continuity	16
6	The electromagnetic field of charges moving with a constant	
	velocity	18
7	The electromagnetic field of moving charges. The general	
	case	23
8	Maxwell—Lorentz system of equations	28
9	The displacement current	30
10	The electromagnetic field potentials	34
11	Gauge invariance of the potentials	37
12	Energy conservation law of the electromagnetic field	40
13	Momentum conservation law of the electromagnetic field	44
Cha	pter 2 The electrostatic field	
14	The electrostatic field	49
15	The electrostatic field of a system of point charges	52
16	Quadrupole moment	57
17	Work and energy in an external electrostatic field	62
18	The interaction energy of a system of charges and the elec-	
	trostatic field energy	65

xvi CONTENTS

Cnap	ter 3 Ine quasistationary magnetic field	
§19	The field of a system of charges undergoing a slow quasi-	
8	stationary motion	69
20	The field of a point charge undergoing a slow uniform mo-	
	tion	76
21	The field of a system of charges undergoing quasistationary	
	motion at a large distance from the system	79
22	The magnetic moment	82
Chap	ter 4 The electromagnetic field of arbitrarily moving charges	
23	The electromagnetic field of a system of arbitrarily moving	
	charges	85
24	General solution of D'Alembert's equation in the form of	
	retarded potentials	94
25	The field of a point charge moving arbitrarily	102
Chap	ter 5 Radiation theory	
26	The potentials of the electromagnetic field at a large dis-	
	tance from the emitter in the dipole approximation	106
27	The electromagnetic field of dipole radiation at a large dis-	
	tance from the emitter	112
28	Dipole radiation of simple systems	116
29	Radiation reaction	121
30	Line width of emitted radiation	125
31	Quadrupole and magnetic dipole radiation	129
32	General case of electromagnetic radiation. The spectral de-	
	composition of fields. The radiation zone and induction	
	zone. Effect of the proper retardation	134
Chap	ter 6 Electromagnetic field in a vacuum and electromagnetic wave scattering	
33	The propagation of electromagnetic waves at a large distance	
33	from the emitter	142
34	Plane wave polarization	149
	Interference and the formation of wave packets	152
	Scattering of the electromagnetic waves by a free charge and	
	by a bound electron	157
37	Absorption of radiation	162
38	Canonical form of the field equations	164

CONTENTS	xvii

Chap	oter 7 The motion of particles in electromagnetic fields	
§ 39	The motion of charged particles in constant electric and magnetic fields	174
40	The motion of charged particles in slowly varying magnetic fields	182
41	The Lagrangian and Hamiltonian for a particle moving in an electromagnetic field	187
42	The motion of a system of two charged particles and the radiation from them	189
43	The scattering of particles and associated bremsstrahlung	196
Part 1	II Theory of relativity	
Chap	ter 1 General principles of the theory of relativity	
§ 1	The creation and significance of the theory of relativity	215
	Galilean transformations	216
3	Attempts to determine an absolute velocity	219
4	Postulates of the Einstein theory of relativity	222
5	The Lorentz transformation	224
6	Consequences of the Lorentz transformation. Space and	
	time intervals	228
7	Einstein's law of addition of velocities and angular transfor-	
	mations	234
8	Simultaneity, short-range action and action at a distance	237
9	Absolute values in the theory of relativity. Intervals and	
	proper time	238
10	The invariance of physical laws under Lorentz transformations. Four-dimensional formulation of the theory of rela-	
11	tivity	242
11	Four-dimensional vectors and tensors. Four-dimensional	0.40
	velocity and acceleration	248
Chap	ter 2 Relativistic mechanics	
12	The dynamical equations of a material point	256
13	Momentum, energy and mass in relativistic mechanics	260
14	Lagrange's equations; the Lagrangian and Hamiltonian	267

§ 15	The mechanics of a system of particles in the theory of rela-	
	tivity	268
16	The energy-momentum conservation law in nuclear physics	274
17	The theory of collisions between relativistic particles.	
	Compton effect	286
Chap	ter 3 Relativistic electrodynamics	
18	Charge conservation, the four-dimensional current and the	
	equation of continuity	292
19	The relativistically invariant formulation of the equations of	
	the electromagnetic field potentials	294
20	The field of a moving charge	296
21	The electromagnetic field tensor and Maxwell's equations	304
	Some applications: Doppler effect. Mössbauer effect, obser-	
	vation of rapidly moving bodies, transformation of angles,	
	intensities and cross sections	307
23	The Lorentz force; the Lagrangian and the Hamiltonian for	
	a particle moving in an electromagnetic field	325
24	The motion of particles in constant electric and magnetic	
	fields	331
25	A system of weakly interacting charged particles	340
26	The radiation emitted by a moving charge	350
Appe	endix I Vector analysis	356
SH. 690	endix II The Fourier integral	375
	endix III The delta-function and its properties	379
Subie	ect index	387