| Appendix | Fourier Series, Integral Transforms, and
Generalized Functions | 364 | |------------|---|-----| | Combined 1 | Index | 11 | | VOLUME 2 | 2 | | | | PART 4 QUANTUM THEORY | | | Chapter 14 | History and Principles of Quantum Mechanics | 387 | | | 1 Brief Historical Account of the Development of
Quantum Theory, 387 | | | | 2 Principles of Quantum Mechanics, 399 | | | Chapter 15 | Some Solvable Problems in Quantum Mechanics | 408 | | | Spin-½ Particle in a Magnetic Field, 408 Coordinate and Momentum Operators; the Free | | | | Particle, 416 | | | | 3 The Harmonic Oscillator, 4224 Charged Particle in a Uniform Time-Dependent | | | | Electric Field, 430 | | | | 5 Charged Particle in a Uniform | | | | Magnetic Field, 432 | | | | 6 The Hydrogen Atom, 435 | | | Chapter 16 | Symmetry in Quantum Mechanics | 445 | | | 1 Displacements and Linear Momentum, 445 | | | | 2 Rotations and Angular Momentum, 447 | | | | 3 Addition of Angular Momenta, 458 | | | | 4 Space Inversion and Parity; Time Reversal, 462
5 Dynamical Symmetry, 466 | | | | 5 Dynamical Symmetry, 4666 Gauge Transformations, 468 | | | | 7 Identical Particles, 469 | | | Chapter 17 | Interference Phenomena | 475 | | | 1 Filtering Atoms with a Stern-Gerlach Apparatus, 475 | | | | Contents | XV | |-------------------------|---|-----| | | The Propagator as a Sum over Paths, 481 The Aharonov-Bohm Effect, 488 | | | Chapter 18 | Approximation Methods | 492 | | | Time-Independent Perturbation Theory, 492 Time-Dependent Perturbation Theory, 500 Born Approximation for Scattering, 508 Variational Method, 514 The WKB Approximation, 518 | | | Chapter 19
Mechanics | Some Applications of Nonrelativistic Quantum | 526 | | | Atomic Structure, 526 Molecular Structure, 544 Structure of Solids, 547 Structure of Nuclei, 551 | | | Chapter 20 | Relativistic Wave Equations | 553 | | | Wave Equation for Zero-Spin Particle, 553 The Dirac Equation, 555 Solutions of the Dirac Equation, 565 Wave Equations for Particles of Any Spin, 571 | | | Chapter 21 | Quantum Theory of Radiation | 575 | | | 1 Quantization of the Electromagnetic Field, 575 2 Interaction of Radiation and Matter, 581 | | | Chapter 22 | Second Quantization | 598 | | | Quantization of the Nonrelativistic Schrödinger
Equation, 598 Quantization of the Dirac Equation 605 Quantization of the Klein-Gordon Equation, 609 | | | Chapter 23 | Elementary Particles and Their Interactions | 614 | | | 1 A Survey of Particles and Interactions, 614 2 Ouantum Electrodynamics, 619 | | | | 3 The Theory of Beta Decay, 6254 Strongly Interacting Particles, 632 | | |------------|---|-----| | | | | | | PART 5 STATISTICAL PHYSICS | | | Chapter 24 | Thermodynamics | 645 | | | 1 The Zeroth Law of Thermodynamics and the | | | | Definition of Empirical Temperature, 645
2 Work, Heat, Internal Energy, and the First Law | | | | of Thermodynamics, 647 | | | | 3 Digression on Elementary Kinetic Theory, 648 | | | | 4 Carnot Cycles and the Second Law of Thermo- | | | | dynamics, 653 5 Entropy and Irreversibility, 658 | | | | 5 Entropy and Irreversibility, 6586 Thermodynamic Potentials, 664 | | | | 7 Phase Transitions, 670 | | | | 8 The Third Law of Thermodynamics, 673 | | | Chapter 25 | Equilibrium Statistical Mechanics | 676 | | | 1 Statistical Description of Classical and Quantum | | | | Systems, 676 | | | | 2 Equilibrium Ensembles; the Microcanonical and | | | | Canonical Distributions, 680 3 Derivation of the Laws of Thermodynamics, 685 | | | | 4 Information Theory Approach to Statistical | | | | Mechanics, 687 | | | | 5 The Grand Canonical Ensemble, 694 | | | | 6 The Approach to Equilibrium and the Origin of | | | | Irreversibility, 696 | | | Chapter 26 | Applications of Equilibrium Statistical Mechanics | 705 | | | 1 The Classical Ideal Gas, 705 | | | | 2 Quantum Statistics of Indistinguishable | | | | Particles. 709 | | | | 3 The Ideal Fermi-Dirac Gas, 715 | | | | 4 The Ideal Bose-Einstein Gas, 718 | | | | 5 The Photon Gas, 722 | | | | 6 The Phonon Gas, 724 | | | | 7 Paramagnetic Crystals, 726 | | | | | | | Chapter 27 | The Kinetic Theory of Gases 1 The Boltzmann and the Vlasov Equations, 731 2 The Quantum Boltzmann Equation, 735 3 Boltzmann's H-Theorem, 737 4 The Equations of Fluid Mechanics, 741 5 The Chapman-Enskog Development and Transport Coefficients, 743 6 The Fluctuation-Dissipation Theorem, 746 | 731 | |------------|--|-----| | Chapter 28 | Collective Phenomena | 756 | | | Plasma Oscillations, 756 Sound Waves, 763 Superfluidity, 766 Superconductivity, 772 | | | Combined I | ndex | Ĭ1 | Contents xvii