Contents of Volume 1 | | Pre | face | | xvii | |---|------|---------|--|------| | 1 | Intr | oductio | on | 1 | | | 1.1 | The p | place of symmetry in physics | 1 | | | 1.2 | - | ples of the consequences of symmetry | 3 | | | | 1.2.1 | One particle in one dimension (classical) | 3 | | | | 1.2.2 | One particle in two dimensions (classical) | 3 | | | | | Two particles connected by springs (classical) | 4 | | | | 1.2.4 | | | | | | | mechanics—spherical symmetry and degeneracies | 5 | | | | 1.2.5 | | | | | | | mechanics—parity and selection rules | 6 | | | | 1.2.6 | | | | | | | physics | 7 | | | 1.3 | Sumn | nary | 8 | | 2 | Gro | ups an | d Group Properties | 9 | | | 2.1 | | ition of a group | 9 | | | 2.2 | | ples of groups | 11 | | | 2.3 | | orphism | 16 | | | | Subgr | | 17 | | | 2.5 | _ | lirect product group | 17 | vi Contents | | 2.6 | Conju | igate elements and classes | 18 | | |---|--------------------------------------|-------------------------------|---|----|--| | | 2.7 | Exam | ples of classes | 19 | | | | | | The rotation group \mathcal{R}_3 | 19 | | | | | | The finite group of rotations D_3 | 20 | | | | | | The symmetric group \mathscr{S}_3 | 21 | | | | 2.8 | The c | lass structure of product groups | 21 | | | | 2.9 | | roup rearrangement theorem | 22 | | | | Bibl | iograph | | 22 | | | | Pro | blems | | 22 | | | 3 | Line | ar Alg | ebra and Vector Spaces | 24 | | | | 3.1 | Linea | r vector space | 25 | | | | 3.2 Examples of linear vector spaces | | ples of linear vector spaces | 27 | | | | | 3.2.1 | Displacements in three dimensions | 27 | | | | | 3.2.2 | Displacement of a set of N particles in three | | | | | | | dimensions | 28 | | | | | 3.2.3 | Function spaces | 28 | | | | | 3.2.4 | Function space with finite dimension | 29 | | | | | 3.2.5 | Wave functions | 29 | | | | 3.3 | Linea | r operators | 30 | | | | 3.4 | | nultiplication, inverse and transformation of operators | 32 | | | | 3.5 | | | | | | | | operators | | | | | | 3.6 | | | | | | | 3.7 | | | | | | | 3.8 | Exam | ples of linear operators | 38 | | | | | | Rotation of vectors in the xy-plane | 38 | | | | | 3.8.2 | Permutations | 39 | | | | | | Multiplication by a function in function space | 39 | | | | | | Differentiation in function space | 40 | | | | | 3.8.5 | Induced transformation of functions | 40 | | | | | 3.8.6 | Further example of induced transformation of | | | | | | | functions | 41 | | | | | 3.8.7 | Transformed operator | 41 | | | | Bibliography | | | 42 | | | | | blems | • | 42 | | | 4 | Gro | up Rep | presentations | 43 | | | | 4.1 | Defin | ition of a group representation | 43 | | | | 4.2 | Matrix representations | | 44 | | | | 4.3 | 8 Examples of representations | | 45 | | | | | 4.3.1 | The group D_3 | 45 | | | | | 4.3.2 | The group \mathcal{R}_2 | 46 | | | | | 4.3.3 | Function spaces | 47 | | | | 4.4 | | | 48 | | | | 4.5 | | ucibility | 50 | | | | 16 | Eavi | volent representations | 52 | | | | Contents | vii | |------|---|--| | | 4.6.1 Proof of Maschke's theorem | 53 | | 4.7 | Inequivalent irreducible representations | 54 | | 4.8 | Orthogonality properties of irreducible representations | 54 | | | 4.8.1 Proof of Schur's first lemma | 58 | | | 4.8.2 Proof of Schur's second lemma | 60 | | 4.9 | Characters of representations | 60 | | | | | | | representations | 61 | | 4.11 | Use of group characters in reducing a representation | 62 | | 4.12 | A criterion for irreducibility | 63 | | 4.13 | How many inequivalent irreducible representations?—The | | | | regular representation | 64 | | | | 66 | | 4.15 | Construction of the character table | 67 | | 4.16 | Orthogonality of basis functions for irreducible | | | | representations | 68 | | | | 70 | | 4.18 | | | | | * · | 73 | | | | 74 | | 4.20 | | | | | | 78 | | | | 81 | | | | 83 | | | | 83 | | | | 85 | | | | 85 | | | | 89 | | | | 90 | | | | 91
92 | | | | 93 | | 3.0 | | 93 | | | | 95
95 | | | | 96 | | | , | 96 | | 57 | | 97 | | | | 99 | | 5.0 | | 100 | | | | 101 | | 5.9 | | 102 | | | | 103 | | | | 104 | | | · · · | 104 | | | | 106 | | | 4.8 4.9 4.10 4.11 4.12 4.13 4.14 4.15 4.16 4.17 4.18 4.19 4.20 4.21 Bibli Prob Sym 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 | 4.6.1 Proof of Maschke's theorem 4.7 Inequivalent irreducible representations 4.8 Orthogonality properties of irreducible representations 4.8.1 Proof of Schur's first lemma 4.8.2 Proof of Schur's second lemma 4.9 Characters of representations 4.10 Orthogonality relation for characters of irreducible representations 4.11 Use of group characters in reducing a representation 4.12 A criterion for irreducibility 4.13 How many inequivalent irreducible representations?—The regular representation 4.14 The second orthogonality relation for group characters 4.15 Construction of the character table 4.16 Orthogonality of basis functions for irreducible representations 4.17 The direct product of two representations 4.18 Reduction of an irreducible representation on restriction to a subgroup 4.19 Projection operators 4.20 Irreducible sets of operators and the Wigner – Eckart theorem 4.21 Representations of direct product groups Bibliography Problems Symmetry in Quantum Mechanics 5.1 Brief review of the framework of quantum mechanics 5.2 Definition of symmetry in a quantum system 5.3 Degeneracy and the labelling of energies and eigenfunctions 5.4 Selection rules and matrix elements of operators 5.5 Conservation laws 5.6 Examples 5.6.1 Symmetry group C₃ 5.6.2 Symmetry group D₃ 5.6.3 Symmetry group S₂ 5.6.4 Symmetry group P₂ 5.6.4 Symmetry group P₃ 5.6.5 Symmetry group P₂ 5.6.4 Symmetry group P₃ 5.6. Symmetry group of group theory in a variational approximation | viii Contents | | 6.1 | The harmonic approximation | 107 | | | |---|------|--|-----|--|--| | | 6.2 | Classical solution | 108 | | | | | 6.3 | Quantum mechanical solution | | | | | | 6.4 | Effects of symmetry in molecular vibrations 11 | | | | | | 6.5 | Classification of the normal modes | 113 | | | | | | 6.5.1 The water molecule | 115 | | | | | | 6.5.2 The ammonia molecule | 116 | | | | | 6.6 | Vibrational energy levels and wave functions | 117 | | | | | 6.7 | Infrared and Raman absorption spectra of molecules | 120 | | | | | | 6.7.1 Infrared spectra | 120 | | | | | | 6.7.2 Raman spectra | 121 | | | | | 6.8 | Displacement patterns and frequencies of the normal modes | 122 | | | | | Bibl | iography | 124 | | | | | | blems | 124 | | | | 7 | Con | tinuous Groups and their Representations, Including Details | | | | | | | of the Rotation Groups \mathcal{R}_2 and \mathcal{R}_3 | 125 | | | | | 7.1 | General remarks | 126 | | | | | 7.2 | Infinitesimal operators | 127 | | | | | 7.3 | | 130 | | | | | | 7.3.1 Irreducible representations | 131 | | | | | | 7.3.2 Character | 131 | | | | | | 7.3.3 Multiplication of representations | 132 | | | | | | 7.3.4 Examples of basis vectors | 132 | | | | | | 7.3.5 Infinitesimal operators | 133 | | | | | 7.4 | The group \mathcal{R}_3 | 134 | | | | | | 7.4.1 Infinitesimal operators | 135 | | | | | | 7.4.2 Irreducible representations | 137 | | | | | | 7.4.3 Characters | 140 | | | | | | 7.4.4 Multiplication of representations | 141 | | | | | | 7.4.5 Examples of basis vectors | 143 | | | | | | 7.4.6 Irreducible sets of operators and the Wigner-Eckart | | | | | | | theorem | 146 | | | | | | 7.4.7 Equivalent operators | 147 | | | | | 7.5 | The Casimir operator | 148 | | | | | 7.6 | Double-valued representations | 150 | | | | | 7.7 | The complex conjugate representation | 153 | | | | | Bib | liography | 153 | | | | | Pro | blems | 154 | | | | 8 | Ang | Angular Momentum and the Group \mathcal{R}_3 with Illustrations from | | | | | | Ato | mic Structure | 156 | | | | | 8.1 | Rotational invariance and its consequences | 156 | | | | | 8.2 | 2 Orbital angular momentum of a system of particles 13 | | | | | | 8.3 | | | | | | | 8.4 | 4 Intrinsic spin | | | | | | 0.5 | The hydrogen atom | 166 | | | | Contents | İ¥ | |----------|-----| | Contents | i A | | | 8.6 | The structure of many-electron atoms | 170 | |----|------|---|-----| | | | 8.6.1 The Hamiltonian | 170 | | | | 8.6.2 The Pauli principle and shell filling | 171 | | | | 8.6.3 Atoms with more than one valence electron— LS | | | | | coupling | 173 | | | | 8.6.4 Classification of terms | 176 | | | | 8.6.5 Ordering of terms | 179 | | | Bibl | iography | 181 | | | | blems | 181 | | 9 | Poir | nt Groups with an Application to Crystal Fields | 183 | | | 9.1 | Point-group operations and notation | 184 | | | 9.2 | The stereogram | 184 | | | 9.3 | Enumeration of the point groups | 186 | | | | 9.3.1 Proper groups | 186 | | | | 9.3.2 Improper groups | 191 | | | 9.4 | The class structure of the point groups | 192 | | | | 9.4.1 Proper point groups | 193 | | | | 9.4.2 Improper point groups | 193 | | | 9.5 | The crystallographic point groups | 196 | | | 9.6 | Irreducible representations for the point groups | 197 | | | 9.7 | Double-valued representations of the point groups | 199 | | | 9.8 | Time-reversal and magnetic point groups | 201 | | | 9.9 | Crystal field splitting of atomic energy levels | 202 | | | | 9.9.1 Definition of the physical problem | 202 | | | | 9.9.2 Deduction of the manner of splitting from symmetry | | | | | considerations | 204 | | | | 9.9.3 Effect of a magnetic field | 209 | | | Bibl | iography | 210 | | | Pro | blems | 211 | | 10 | Isos | pin and the Group SU_2 | 213 | | | 10.1 | | 214 | | | | 10.1.1 Isospin labelling and degeneracies | 215 | | | | 10.1.2 Splitting of an isospin multiplet | 218 | | | | 10.1.3 Selection rules | 221 | | | 10.2 | Isospin in elementary particles | 222 | | | | 10.2.1 Collisions of π -mesons with nucleons | 223 | | | 10.3 | Isospin symmetry and charge-independence | 223 | | | Bibl | liography | 224 | | | Pro | blems | 224 | | 11 | The | Group SU ₃ with Applications to Elementary Particles | 226 | | | 11.1 | | 227 | | | 11.2 | | 230 | | | 11.3 | - | 231 | | | 11.4 | | 232 | | | 11.5 | | 233 | x Contents | | 11.6 | Irreducible representations of SU_3 | 233 | | | | |-----|---|--|-----|--|--|--| | | | 11.6.1 Complex conjugate representations | 241 | | | | | | | 11.6.2 Multiplication of representations | 242 | | | | | | 11.7 | Classification of the hadrons into SU_3 multiplets | 243 | | | | | | 11.8 | The mass-splitting formula | 244 | | | | | | 11.9 | Electromagnetic effects | 247 | | | | | | 11.10 | Casimir operators | 248 | | | | | | Biblio | Bibliography | | | | | | | Probl | lems | 249 | | | | | 12 | Supermultiplets in Nuclei and Elementary Particles—the Groups | | | | | | | | SU_4 and SU_6 and Quark Models | | | | | | | | 12.1 | Supermultiplets in nuclei | 252 | | | | | | 12.2 | Supermultiplets of elementary particles | 255 | | | | | | 12.3 | The three-quark model | 257 | | | | | | 12.4 The nine-quark model | | | | | | | | 12.5 | Charm | 262 | | | | | | Biblio | Bibliography | | | | | | | Prob | | 263 | | | | | Apı | pendix | 1 Character Tables for the Irreducible Representations | of | | | | | E1 | | the Point Groups | 265 | | | | | Ap | pendix | | 275 | | | | | Ind | ex to 1 | Volumes 1 and 2 (adjacent to p. 280) | I | | | |