CONTENTS

Preface to Volume IV. iii

Chapter 1. Introduction

- 1-5 The scope of quantum physics. 1-1
- 6-12 Atoms and elementary particles. 1-5
- 13-21 The uncertainty principle. 1-13
- 22-33 The discovery of Planck's constant. 1-24
 References for further study. 1-42
 Problems. 1-44

Chapter 2. Magnitudes of Physical Quantities in Quantum Physics

- 1-7 General considerations. 2-1
- 8-14 Energy. 2-10
- 15-25 Magnitudes characteristic of atomic and molecular physics. 2-24
- 26-29 The most basic facts of nuclear physics. 2-38
- 30-33 Gravitational and electromagnetic forces. 2-45
- 34-35 Concerning numerical work. 2-48
- 36-43 Advanced topic: The fundamental constants of nature. 2-52 References for further study. 2-62 Problems. 2-63

Chapter 3. Energy Levels

- 1-30 Term schemes. 3-1
- 31-38 Simple theory of electromagnetic transitions. 3-32
- 39-45 The finite widths of energy levels 3-43
- 46-48 Doppler-broadening and collision broadening of spectral lines. 3-53
 References for further study. 3-57
 Problems. 3-58

Chapter 4. Photons

- 1-14 The photon as a particle. 4-1
- 15-22 The Compton effect; Bremsstrahlung; Pair creation and annihilation. 4-20
- 23-42 Can Photons be split? 4-35
 References for further study. 4-57
 Problems. 4-60

Chapter 5. Material Particles

- 1-11 The de Broglie waves. 5-1
- 12-16 There is but one Planck's constant. 5-15
- 17-23 Can matter waves be split? 5-22
- 24-31 The wave equation and the superposition principle. 5-30
- 32-40 The uncertainty relations. 5-39
- 41-44 Advanced topic: The vector space of physical states. 5-51 References for further study. 5-56 Problems. 5-57

Chapter 6. The Quantum Mechanical Theory of Measurements

- 1-29 Measurements and statistical ensembles. 6-1
- 30-34 Is the outcome of every measurement predictable in principle? 6-38
- 35-36 Polarized and unpolarized light. 6-43
 References for further study. 6-48
 Problems. 6-49

Chapter 7. The Phenomenological Wave Mechanics of Schrödinger

- 1-11 Schrödinger's non-relativistic wave equation. 7-1
- 12-22 Some simple "barrier problems." 7-20
- 23-30 Theory of alpha-radioactivity. 7-40
- 31-32 Advanced topic: Normalization of the wave function. 7-53
 References for further study. 7-58
 Problems. 7-59

Chapter 8. Theory of Energy Levels

- 1-16 Quantization as an eigenvalue problem. 8-1
- 17-31 The harmonic oscillator. Vibrational and rotational excitations of molecules. 8-30
- 32-37 Hydrogen-like systems. 8-51
- 38-43 Advanced topic: The position and momentum operators in the Schrödinger theory. 8-60

 References for further study. 8-69

Problems. 8-70

Chapter 9. The Problem of Describing Interactions

- 1-4 Particle interactions and the wave picture. 9-1
- 5-11 What is meant by a particle? 9-5
- 12-21 Basic ideas of quantum field theory. 9-15
- 22-31 Pions and nuclear forces. 9-27
 References for further study. 9-36

Appendix

- 1. Units and conversion factors. A-1
- 2. Physical constants. A-3
- 3. Crude values of physical constants to be memorized. A-5

