CONTENTS

	Preface to Volume III. iii
	Chapter 1 - Modes.
1.1	Introduction. 1-1
1.2	Oscillations of a system with 1 degree of freedom. 1-10
1.3	Linearity and the Superposition Principle. 1-19
1.4	Oscillations of a system with two degrees of freedom. 1-22
1.5	Beats. 1-34
1.6	Systems with many degrees of freedom. Dispersion relations. 1-48
	Problems. 1-70
	Chapter 2 - Waves.
2.1	Introduction. 2-1
2.2	Harmonic traveling waves. 2-5
2.3	Superposition of two harmonic traveling waves. Group velocity. 2-15
2.4	Superposition of many harmonic waves. Pulses and wave packets. 2-23
2.5	Wave equations. 2-40
	Problems. 2-59
	Chapter 3 - Emission and absorption of waves: Impedance.
3.1	Introduction. 3-1
3.2	Emission and absorption of traveling waves on a continuous string. 3-8
3.3	Sound waves. 3-22
*3.4	Current and voltage waves on a transmission line. 3-47
*3.5	Radiation by an oscillating sheet of charge. 3-65
3.6	The general case of electromagnetic plane waves in vacuum. 3-72
* 3.7	Reflection at a reactive load. 3-80

Problems and Home Experiments. 3-98

Chapter 4 - Polarization.

- 4.1 Introduction. 4-1
- 4.2 Description of polarization. 4-6
- 4.3 Production of polarized transverse waves. 4-15
- 4.4 Double refraction. 4-29
- 4.5 Bandwidth, coherence time, and polarization. 4-40 Problems and Home Experiments. 4-51

Chapter 5 - Interference and Diffraction

- 5.1 Introduction. 5-1
- 5.2 Interference between two coherent point sources. 5-2
- 5.3 Interference between two independent sources. 5-13
- 5.4 How large can a "point" light source be? 5-20
- 5.5 Angular width of a 'beam' of traveling waves -- approximate treatment. 5-24
- 5.6 Multiple-slit interference pattern and single-slit diffraction pattern. 5-31
- 5.7 Geometrical optics. 5-45
 Problems and Home Experiments. 5-62

Advanced Topics.

- 1. "Microscopic" examples of weakly-coupled identical oscillators. AT-1
- 2. Dispersion relation for de Broglie waves. AT-5
- 3. Phase and group velocities for de Broglie waves. AT-8
- 4. Wave equations for de Broglie waves. AT-10
- 5. Three-dimensional classical wave equation with spherical symmetry. AT-11
- 6. Reflection of de Broglie waves at discontinuities in potential energy. AT-15
- 7. Solution of driven oscillator problem by Green's function method. AT-19