1.	有限	要素法の基礎的理念	1
	1.1	まえがき・・・・・・・・・・・・・・・・ 1	
	1.2	構造要素と系・・・・・・・・・・・・・・・・・3	
	1.3	要素剛性の組立てと構造の解析・・・・・・・・・・・ 9	
	1.4	境 界 条 件・・・・・・・・・・・・・・・・11	
	1.5	電気または流体の回路網 ・・・・・・・・・・・・12	
	1.6	一般的なパターン ・・・・・・・・・・・・・・14	
	1.7	標準的離散系	
	1.8	座標系の変換 ・・・・・・・・・・・・・・・・17	
2.	弾性	:連続体の有限要素――変位法	21
	2.1	まえがき ・・・・・・・・・・・・・・・・21	
	2.2	有限要素特性の直接の誘導 ・・・・・・・・・・・23	
	2.3	全領域への一般化――内部節点力の概念の放棄 ・・・・・・・29	
	2.4	全ポテンシャルエネルギ最小化としての変位法 ・・・・・・31	
	2.5	収束性の判定 ・・・・・・・・・・・・・・・33	
	2.6	離散化誤差と収束率 ・・・・・・・・・・・・・・35	
	2.7	要素間に不連続のある変位関数とパッチテスト ・・・・・・36	
	2.8	変位法におけるひずみエネルギの上下界 ・・・・・・・37	
	2.9	直接的最小化 · · · · · · · · · · · · · · · · · · ·	
		例 題 · · · · · · · · · · · · · · · · · ·	
	2.11	むすび ・・・・・・・・・・・・・・40	
3.	有限	要素概念の一般化――重みつき残差および変分法	43
	3.1	緒 論	
Ī	重みつ	き残差法	
	3.2	微分方程式と等価な積分形あるいは'弱'表現 ・・・・・・・46	
	3.3	熟伝導方程式の弱表現式――強制および自然境界条件 ・・・・・48	
	3.4	積分定式化の近似:重みつき残差法 ・・・・・・・・50	
	3.5	例 題 . •	
	3.6	固体または流体解析のための平衡方程式の'弱型式'	
		としての仮想仕事・・・・57	
	3.7	部分離散化	
	3.8	収 東 性 ・・・・・・・・・・・・・・・・62	

	変分原	理	
	3.9	'変分原理'とは何か? ・・・・・・・・・・・・・64	
	3.10	'自然'変分原理とそれらの支配方程式との関係 ・・・・・・・66	
	3.11	線形自己随伴型微分方程式に対する自然変分原理の構築・・・・・71	
	3.12	最大、最小、あるいは鞍形点か?・・・・・・・・・・74	
	3.13	拘束された変分原理,Lagrange の乗数および随伴関数 · · · · · 75	
	3.14	拘束変分原理,ペナルティ関数と最小自乗法・・・・・・・81	
4.	平面	応力および平面ひずみ	90
	4.1	まえがき ・・・・・・・・・・・・・90	
	4.2	要素の特性・・・・・・・・・・・・・・・・・91	
	4.3	計算例――精度の評価・・・・・・・・・・・・101	
	4.4	実際問題に対するいくつかの応用例・・・・・・・・・・・・104	
	4.5	非圧縮性材料の平面ひずみ問題に対する特別な処理・・・・・・112	
5.	軸対	称応力 解析	116
	5.1	まえがき・・・・・・・・・・・・・・・116	
	5.2	要素の特性・・・・・・・・・・・・・・・・・・・・・117	
	5.3	基本的な計算例題 · · · · · · · · · · · · · · · · · · ·	
	5.4	実際問題への応用例・・・・・・・・・・・・127	
	5.5	非対称荷重・・・・・・・・・・・・・・・・・・・127	
	5.6	軸対称と平面ひずみおよび平面応力・・・・・・・・・127	
6.	3 次	元応力 解 析	132
	6.1	まえがき・・・・・・・・・・・・・・132	
	6.2	四面体要素の特性・・・・・・・・・・・・ 133	
	6.3	8 節点の複合要素・・・・・・・・・・・・138	
	6.4	例題とまとめ・・・・・・・・・・・・・138	
7.	要素	の形状関数—— $oldsymbol{C}_0$ クラスの連続性をもついくつかの一般的要素族	144
	7.1	まえがき・・・・・・・・・・・・・144	• •
	2 次元	要素	
	7.2	長方形要素——予備的考察 · · · · · · · · · · · · · · · 146	
	7.3	多項式の完全性 ・・・・・・・・・・・・・・・149	
	7.4	長方形要素——Lagrange 族 · · · · · · · · · · · · · · · · · ·	
	7.5	長方形要素―― 'セレンディピティ'族 ・・・・・・・・152	
	7.6	内部節点および'節点なし'の変数 · · · · · · · · · · · · 156	
	7.7	組立て前の内部変数の消去――部分構造・・・・・・・・158	
	7.0	一 A W 哥 丰 4 160	

	1 次元	要素	
	7.9	直 線 要 素 · · · · · · · · · · · · · · · · · ·	
	7.10	長方柱―― 'セレンディピティ'族・・・・・・・・・165	
	7. 11	長方柱——Lagrange 族 · · · · · · · · · · · · · · · · · ·	
	7.12	四面体要素族 · · · · · · · · · · · · · · · · · · ·	
	7.13	他の簡単な 3 次元要素・・・・・・・・・・・171	
8.	アイ	ソパラメトリック曲面要素と数値積分法	173
	8.1	まえがき・・・・・・・・・・・173	
þ	由線座	標系	
	8.2	座標変換における形状関数の使用・・・・・・・・・176	
	8.3	要素の幾何学的適合性・・・・・・・・・・・・・179	
	8.4	変換曲面要素内での未知関数の変化と連続性の要求・・・・・179	
3	変換の	法則	
	8.5	要素マトリックスの誘導・・・・・・・・・・・183	
	8.6	要素マトリックス,面積座標と体積座標・・・・・・・・186	
	8.7	曲線座標系で表示された要素の収束性・・・・・・・・187	
梦	故値積	分	
	8.8	数値積分——1 次元積分······189	
	8.9	数値積分――長方形あるいは直角柱領域・・・・・・・・193	
	8.10	数値積分――三角形あるいは四面体領域・・・・・・・・194	
	8.11	数値積分に要求される精度・・・・・・・・・・・194	
	8.12	写像による有限要素メッシュ分割・・・・・・・・・・200	
	8.13	あとがき・・・・・・・・・・・202	
9.	2 ×	元,3次元応力解析におけるアイソパラメトリック要素の応用	205
J.		まえがき・・・・・・・・・・・・・・・・・205	~00
	9.2	数値積分を用いる有限要素の計算上の利点・・・・・・・207	
	9.3	2 次元応力解析の二, 三の実例・・・・・・・・・208	
		3 次元応力解析 · · · · · · · · · · · · · · · · · · ·	
	9.5	対称性と同形状の繰り返し・・・・・・・・・・214	
	9.6	高次要素に対する一般的注意・・・・・・・・・・216	
10.	薄材	$oldsymbol{C}$ $oldsymbol{C}$ 1 $oldsymbol{-}$ 連続性の問題	220
		まえがき・・・・・・・・・・・・・・220	
		板曲げの問題における変位の定式化・・・・・・・・222	
	10.3	形状関数に要求される連続性(C_1 連続性) ・・・・・・・・225	
╡	上海合	形状関数	

10	0.4	隅節点を有する長方形要素 · · · · · · · · · · · · · · · · · 228	
10	0.5	四辺形要素と平行四辺形要素 ・・・・・・・・ 234	
10	0.6	隅節点を有する三角形要素 ・・・・・・・・・・235	
10	0.7	非適合要素の収束性 ・・・・・・・・・・・・・239	
10	8 .C	解析例	
		寺異性のある適合形状関数	
10	0.9	一般的注意 · · · · · · · · · · · · · · · · · · ·	
10	0.10	簡単な三角形要素についての特異形状関数 ・・・・・・・248	
10	0.11	適合形状関数による18自由度の三角形要素 ・・・・・・・251	
10	0.12	適合四辺形要素 · · · · · · · · · · · · · · · · · · ·	
10	0.13	どの要素がよいか? 数値計算による検討 ・・・・・・・253	
		な自由度をもつ適合形状関数	
		Hermite 形の長方形要素形状関数・・・・・・・・255	
		21 および 18 自由度の三角形要素・・・・・・・・257	
10	0.16	む す び ・・・・・・・259	
11.	非適	合要素,置換形状関数,次数低減積分および類似手法	263
11	1. 1	まえがき ・・・・・・・・・・・・・263	
11	1. 2	パッチテスト ・・・・・・・・・・・・・・・・・264	
11	1.3	非適合 C_0 四辺形要素 $\cdots \cdots \cdots$	
11	1.4	置換形状関数 ・・・・・・・・・・・・・・271	
11	1.5	置換形状関数の結果改良理由. 最適サンプリングと次数低減積分 274	
11	1. 6	次数低減積分およびペナルティ関数による定式化 ・・・・・279	
11	1.7	拘束の直接付与による非適合要素 ・・・・・・・・・291	
11	1.8	む す び ・・・・・・・・・・・・・・295	
12.	555 474	エネルギ原理における Lagrange の拘束,	
12.	严江		299
		'全体場法'と'接合変数(ハイブリッド)法'	200
		まえがき・・・・・・・・・・・・・・299	
	2.2	· · · · · · · · · · · · · · · · · · ·	
	2.3		
		クラス I のハイブリッド定式化例 ・・・・・・・312	
	2.5	非圧縮性変分原理 ・・・・・・・・・・・・・・316	
12	2.6	むすび・・・・・・・・・318	
13.	平面	要素の集合としてのシェル	323
13	3.1	まえがき ・・・・・・・・・・・・・323	
		局所座標による平面要素の剛性 ・・・・・・・・・325	
1;	3.3	全体座標への変換と要素の組立て ・・・・・・・・328	

	13.4	仮想回転剛性――6自由度としての要素の組立て・・・・・330	
	13.5	辺の中点だけで勾配を合わせる要素 ・・・・・・・・331	
	13.6	局所方向余弦 · · · · · · · · · · · · · · · · · · ·	
	13.7	要素の選択 ・・・・・・・・・・・・・・336	
	13.8	実際問題への応用例 ・・・・・・・・・・・・337	
14.	軸対	称シェル	348
	14.1	まえがき ・・・・・・・・・・・・348	
	14.2	要素特性一軸対称荷重一直線要素 · · · · · · · · · · · · · · · 350	
	14.3	例題と精度 ・・・・・・・・・・・・353	
	14.4	曲線要素と形状関数 ・・・・・・・・・・353	
	14.5	曲線要素のひずみの表示および特性 ・・・・・・・358	
	14.6	付加的な節点なしの変数 ・・・・・・・・・・361	
	14.7	ペナルティ関数を用いた勾配―変位の独立補間 ・・・・・・361	
15.	半解	- 折的有限要素法──直交関数の利用	<i>371</i>
	15.1	まえがき ・・・・・・・・・・・・・371	
	15.2	断面一様な棒・・・・・・・・・・・・・・374	
	15.3	薄板の箱形構造物 ・・・・・・・・・・378	
	15.4	曲げを受ける板および箱形構造物・・・・・・・・378	
	15.5	非対称荷重を受ける軸対称物体・・・・・・・・・380	
	15.6	非対称荷重を受ける軸対称シェル ・・・・・・・・384	
	15.7	む す び ・・・・・・・・・・・・・・388	
16	3 <i>/</i> r	元解析の特別な場合としての厚肉シェル	391
	16.1	まえがき ・・・・・・・・・・・・・・・・391	001
	16.2	要素の幾何学的形状の定義 ・・・・・・・・・・・393	
	16.3	変位場の表示 · · · · · · · · · · · · · · · · · · ·	
	16.5	要素特性と必要な変換 ・・・・・・・・・・・・・399	
		応力表示についての注意・・・・・・・・・・・・・・・・401	
		特別な場合としての軸対称、曲線および厚肉シェル・・・・・402	
		特別な場合としての厚肉平板・・・・・・・・・・・・・・・404	
	16.9	収 東 性 ・・・・・・・・・・・・・・・・・・・・・・・405	
		例 題 · · · · · · · · · · · · · · · · · ·	
		む す び ・・・・・・・・・・・・・・・・・・412	
17	中	状態の場の問題――熱伝導,電磁気ポテンシャル, 漫透流, など	/ 16
1/.	•		410
	17.1	まえがき	
	17.2	準調和方程式 ・・・・・・・・・・・・・・・417	

xvi	<u> </u>]	欠

17.3	有限要素への離散化 ・・・・・・・・・・・・・419	
17.4	実用上の特殊化 ・・・・・・・・・・・・・・420	
17.5	精度評価のための例題 ・・・・・・・・・・・・・422	
17.6	実際的問題の例 ・・・・・・・・・・・・・・427	
17.7	む す び ・・・・・・・・・・・・・・440	
18. 材料	∤非線形問題──塑性,クリープ(粘塑性),場の非線形問題,など	443
18.1	まえがき ・・・・・・・・・・・・・・・443	
18.2	非線形離散化問題解法の一般的手続き ・・・・・・・・・444	
18.3	固体力学の非線形構成問題―非線形弾性 ・・・・・・・・451	
18.4	塑 性 ・・・・・・・・・・・・・・・453	
固体力学	学における時間依存性の問題(クリープ,粘塑性および粘弾性)	
18.5	クリープ問題の基礎的定式化 ・・・・・・・・・・469	
18.6	粘 塑 性 · · · · · · · · · · · · · · · · · ·	
18.7	粘 弾 性 · · · · · · · · · · · · · · · · · ·	
18.8	岩石、コンクリート等の特別な問題 ・・・・・・・・480	
18.9	むすび一固体力学分野に対して ・・・・・・・・・485	
18.10	非線形準調和の場の問題 ・・・・・・・・・・・485	
19. 幾何	「学的非線形問題――大変形ならびに構造不安定	495
19.1	まえがき495	,
19.2	-般的考察 · · · · · · · · · · · · · · · · · · ·	
19.3	板の大変形および '初期' 安定問題 501	
19.4		
19.5	一般の大ひずみ、大変位問題の定式化・・・・・・・・511	
19.6		
20. 時間	引次元の場の問題Ⅰ ─場および動的問題の準離散化および	
	解析的に解を求める方法	521
20.1	まえがき ・・・・・・・・・・・・・521	
20.2	空間有限要素分割による時間依存問題の定式化 ・・・・・521	
20.3	'連成'問題 ・・・・・・・・・・・・・・・・・534	
解析的	求解法	
20.4	一般的分類 · · · · · · · · · · · · · · · · · · ·	
20.5	自由応答;2次問題に対する固有値と動的振動・・・・・・539	
20.6	自由応答;1次系問題の固有値と熱伝導問題など・・・・・551	
20.7	自由応答;減衰動的系の固有値 ・・・・・・・・・・553	
20.8	強制周期応答 ・・・・・・・・・・・・・・・ 553	
29.9	解析的手法による過渡応答 ・・・・・・・・・・ 554	

	20.10	対称性と繰り返し構造の特性・・・・・・・・・・559	
21.	時間	次元の場の問題Ⅱ 初期値─過渡問題への有限要素近似	564
	21.1	まえがき・・・・・・・・・・・・564	•
	21.2	1次方程式の2点漸化式 ・・・・・・・・・・・・・・・565	
	21.3	2 点漸化式の振動と不安定性 ・・・・・・・・・ 570	
	21.4	精度と初期条件・・・・・・・・・・・・・・・・・574	
	21.5	2次方程式の3点漸化式 ・・・・・・・・・ 576	
	21.6	2次方程式の3点漸化式の安定性	
	21.7	多点漸化式	
	21.8	漸化式誘導の別法 ・・・・・・・・・・・・・・ 587	
	21.9	非線形時間前進スキーム ・・・・・・・・・・・・・ 587	
	21.10	例 題	
	21. 11	む す び ・・・・・・・・・・・・・596	
22	. 粘性	:流体の流れ 移動輸送現象における特別な問題	600
	22.1	まえがき・・・・・・・・・・・・・・・・600	
	22.2	非圧縮性に近い粘性流体の基本概念・・・・・・・・・・・601	
	22.3	粘性流方程式の離散化・・・・・・・・・・・・・・・・605	
	22.4	粘性流体に対する応用例とその解析手法・・・・・・・609	
	22.5	乱 数 · · · · · · · · · · · · · · · · · ·	
	22.6	非定常時間依存の流れと自由表面の問題・・・・・・・・・616	
	22.7	浅水流れ一河口と湖 ・・・・・・・・・・・・・・・619	
	22.8	移動輸送方程式と特殊な有限要素問題、上流重み ・・・・・626	
	22.9	流体力学における将来の二、三の問題とまとめ ・・・・・・632	
23	倍甲	解法と有限要素法 無限領域、破壊力学における特異点	638
	اوعود 23.1		000
	23.1		
	23.2	有限要素場に組み込まれた境界解法 '要素'・・・・・・・・640 (培用建公士和士' 要素	
	23.4	"境界積分方程式"要素・・・・・・・・・・・・・・・・・・・644 毎四ような特別を開展に対けて他の大法/密は基準によります。	
	23.4	無限および特異点問題に対する他の方法(領域積分における 特殊な形状関数)・・・・・・・・・・・・・・・・654	
	23.5	破壊力学におけるいくつかの側面・・・・・・・・・・・・・・・658	
		む す び ・・・・・・・・・・・・・・・・・・・・・・・666	
		2,70	
24.	有限	要素法の計算法とプログラム	672
	24.1	まえがき ・・・・・・・・・・・・・・672	
	24.2	データ入力モジュール ・・・・・・・・・・・・・674	
	24.3	プログラム使用説明 ・・・・・・・・・・・・・・686	
	24.4	有限要素問題の解法―マクロプログラミング言語 ・・・・・694	

xvii	i	耳	次
	24.6 24.7	有限要素解モジュールの計算 · · · · · · · · · · · · · · · · · · ·	
付	録		797
索	引		811