II. 応用編 目次

4. 動的問題

1.	概	說	[3~11]
	1.1	運動方程式——非減衰 · · · · · · · · · · · · · · · 3	
	1.2	非減衰自由振動 ・・・・・・・・・・・・・・・4	
	1.3	Ritz 法あるいは Rayleigh-Ritz 法 ・・・・・・・・・4	
	1.4	静的縮小法 ・・・・・・・・・・・・・・・・・5	
	1.5	部分構造法——変位法 · · · · · · · · · · · · · · · · · · ·	
	1.6	部分構造法――ハイブリッド法 ・・・・・・・・・8	
	1.7	運動方程式——減衰 · · · · · · · · · · · · · · · · 9	
	1.8	強制振動 ・・・・・・・・・・・・・・10	
2.	質量	マトリックスと減衰マトリックス	[12~28]
	2.1	動的問題における各種要素マトリックスの定式 ・・・・・・12	
	2.2	X =	
	2.3	各種有限要素の質量マトリックス ・・・・・・・・・16	
3.	直接	積分法	[29~64]
	3.1		
	3.2	直接積分法の特性と選択基準 ・・・・・・・・・・・44	
_		1. ATL > \L	[<i>ar</i> : <i>x</i> o]
4.		ド解析法	[<i>65∼</i> 78]
		まえがき・・・・・・・・・・・・・・・65	
	4.2	モード解析法の基礎式 ・・・・・・・・・・・・65	
	4.3	調和外力に対する応答 ・・・・・・・・・・・・・69	

	4.4	衝撃応答・・・・・・・・・・・70	
	4.5	時刻歴応答 ・・・・・・・・・・・・72	
	4.6	非線形応答 · · · · · · · · · · · · · · · · · · ·	
	4.7	静的に不安定な系の応答・・・・・・・・・・・73	
	4.8	不規則応答 · · · · · · · · · · · · · · · · · · ·	
	4.9	むすび・・・・・・・・・・77	
5.	波動	問題──地震波,水面波	[79 ~ 97]
	5.1	地盤における波動の伝播・・・・・・・・・・79	
	5.2	粘性境界······80	
	5.3	伝達境界 ・・・・・・・・・・・・・83	
	5.5	水 面 波 · · · · · · · · · · · · · · · · · ·	
c	广法	マトリックス法	[<i>98</i> ~ <i>113</i>]
6.			[00 110]
	6.1	概 説 ・・・・・・・・・・・・・98 伝達マトリックス法の概念 ・・・・・・・・・・98	
	6.2 6.3	はりの自由振動の解析・・・・・・・・・・・・・102	
	6.4	100	
	6.5	100	
	6.6	桁落ちを防ぐ数値計算法・・・・・・・・・・・111	
	0.0	刊行りとの、数に町井口	
		5. 構造物の安定および大変形	解析
1.	概	説	[117~121]
	1.1	弾性安定の様式 ・・・・・・・・・・・・・・117	
	1.2	構造力学における不安定現象 ・・・・・・・・・・118	
	1.3	座 屈・・・・・・・・・・・・・・・・・120	
2.	幾何	学的線形と不安定現象	[122~127]
	2.1	安 定 理 論・・・・・・・・・・・・122	
	2.2	不安定現象の分類・・・・・・・・・・・125	
3.	各種	有限要素の幾何剛性マトリックス	[<i>128</i> ~ <i>149</i>]
	3.1	幾何学的非線形問題における各種要素マトリックスの定式・・・128	
		各種有限要素の幾何剛性マトリックス・・・・・・・137	
		H FF 1415-5230 - 301 414417	

4.	数值	解析法と数値解析例 [150~169]
	4.1	序 論・・・・・・・・・・・・・・・・・・150
	4.2	つり合い式とその増分型方程式・・・・・・・・・・152
	4.3	局所線形化による増分法・・・・・・・・・・・・154
	4.4	座屈点とその分類・・・・・・・・・・・・・・157
	4.5	固有ベクトルと座屈モード・・・・・・・・・・・・160
	4.6	座屈点近傍のつり合い径路・・・・・・・・・・・・161
	4.7	弧長増分法・・・・・・・・・・・・・・・・・167
		6. 材料非線形問題の解析
1.	概	説 [173~181]
	1.1	単軸応力場の塑性変形 ・・・・・・・・・・・・・174
	1.2	単軸応力場の粘弾性変形・・・・・・・・・・・・176
	1.3	粘弹塑性変形 · · · · · · · · · · · · · · · · · · ·
	1.4	粘 塑 性 体 · · · · · · · · · · · · · · · · · ·
2.	塑性	生変形 [182~215]
	2.1	弾性構成方程式と応力-ひずみマトリックス ・・・・・・183
	2.2	降 伏 条 件 ・・・・・・・・・・・・・・・・187
	2.3	弾塑性問題の構成方程式の誘導・・・・・・・・・・193
	2.4	弾塑性応力-ひずみマトリックスの具体的表示 ・・・・・・195
	2.5	サブレイヤモデル・・・・・・・・・・・・・・・198
	2.6	全ひずみ理論構成方程式の増分形表示・・・・・・・・199
	2.7	増分解析における積分手法・・・・・・・・・・・・200
	2.8	弾塑性問題の解析例題・・・・・・・・・・・・・・205
3.	粘弹	 性, クリープおよび応力緩和
	3.1	力学モデルによる解析・・・・・・・・・・・・・・219
	3.2	力学モデルによる解析例題・・・・・・・・・・・・224
	3.3	状態方程式によるクリープ解析・・・・・・・・・・・229
	3.4	状態方程式によるクリープ解析例題・・・・・・・・・・238
	3.5	簡易クリープ解析法・・・・・・・・・・・・・・256
4.	大変	形 を含む問題 [270~301]
	4.1	ひずみ および ひずみ速度・・・・・・・・・・・・271
		各種の応力と変化率・・・・・・・・・・・· 275

	4.3	有限要素化と幾何剛性マトリックス・・・・・・・・・・280
	4.4	荷重補正マトリックス・・・・・・・・・・・・・・・283
	4.5	不安定問題の解析・・・・・・・・・・・・・・ 287
	4.6	例 題・・・・・・・・・・・・・・・・・・289
		7. 破壊力学への応用
1.	概	説 [305~325]
	1.1	緒 言 · · · · · · · · · · · · · · · · · ·
	1.2	"有限要素法と破壊力学"発展の沿革 ・・・・・・・・・307
	1.3	有限要素法と破壊力学の話題・・・・・・・・・・・309
	1.4	結 言・・・・・・・・・・・・・・・・・・・324
2.	応力	拡大係数の解析 [326~334]
	2.1	き裂の変形様式と応力拡大係数・・・・・・・・・・・326
	2.2	2次元問題における応力拡大係数の解析・・・・・・・・328
	2.3	3次元問題における応力拡大係数の解析・・・・・・・・330
3.	単調	荷重に対する弾塑性応答 [335~353]
	3.1	き裂先端の塑性城および開口変位の解析・・・・・・・・335
	3.2	J 積分の解析・・・・・・・・・・・・・・・338
	3.3	J 積分とき裂開口変位の関係・・・・・・・・・・・ 340
	3.4	J 積分とストレッチゾーンの関係・・・・・・・・・・ 343
	3.5	き裂伝播の解析・・・・・・・・・・・・・・・348
4.	繰返	し荷重に対する弾塑性応答 [354~367]
	4.1	繰返し荷重に対する計算法・・・・・・・・・・・・354
	4.2	停留き裂の解析・・・・・・・・・・・・・・・・356
	4.3	疲労き裂伝播の解析・・・・・・・・・・・・・360
	4.4	応 用 例・・・・・・・・・・・・・・・・・・364
5.	多結	晶体および複合材料の機械的挙動 [368~397]
	5.1	金属結晶体についての基礎・・・・・・・・・・・・368
	5.2	金属結晶の応力-ひずみマトリックス ・・・・・・・・・371
	5.3	
	5.4	複合材料についての基礎・・・・・・・・・・・・380
		複合材料の応力-ひずみマトリックス ・・・・・・・・・381

	5.6	複合材料の解析例・・・・・・・・・・・・・389	
6.	溶接	そと熱塑性加工問題への応用 [<i>3</i>	98~411]
	6.1	まえがき・・・・・・・・・・・・・・・・・398	
	6.2	温度に伴う金属材料の組織,諸性質の変化の特徴・・・・・・398	
	6.3	材料特性の理想化・・・・・・・・・・・・・・399	
	6.4	解 析 理 論・・・・・・・・・・・・・・・・400	
	6.5	解 析 手 順・・・・・・・・・・・・・・・・404	
	6.6	各種熱加工における力学現象の特徴と解析上の取扱い・・・・406	
	6.7	解 析 例・・・・・・・・・・・・・・・・407	
	6.8	あとがき・・・・・・・・・・・・・・・・411	
7.	連続	た分布転位論への応用 [4	12 ~ 422]
	7.1	まえがき・・・・・・・・・・・・・・・・412	
	7.2	連続分布転位論概説・・・・・・・・・・・・・・412	
	7.3	1個の刃状転位のまわりの応力場・・・・・・・・・・414	
	7.4	440	
	7.5	弾塑性解析・・・・・・・・・・・・・・・・・418	
	7.6	あとがき・・・・・・・・・・・・・・・421	
		8. 構造工学諸分野への応用	
1.	概	説	[425]
2.	代表	長的例題 [4	[26~477]
	2.1	はじめに・・・・・・・・・・・・・・・・426	
	2.2	. 線形応力・変形問題・・・・・・・・・・・・・・427	
	2.3		
	2.4		
	2.5		
	2.6	; 温度解析······457	
	2.7	' 破壊力学の問題・・・・・・・・・・・・・・・・468	
	2.8		
3.			
J.	構造	ちエ学分野での実際的例題 [4	478~575]
٥.			478~575]
J .		土木工学・・・・・・・・・・・・・・・・・478	478~575]
J.			478~575]

	3.1.3	掘削却																				
	3.1.4	擁	壁・																			
	3.1.5																					
	3.1.6	地盤。	と構造	物。	D連	成氰	鬘動	•			•	•	•	•	•	•	•	•	•	•	•	491
	3.1.7	圧	密·			•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	493
3.2	建築工	学·											•			•						499
	3.2.1	建築棒	菁造工	学に	こお	ける	る有	限	要	素	法	の,	応	用	•	•						499
	3.2.2	壁の	解析			•				•				•							•	499
	3.2.3	連層	耐震壁	の角	解析	•								•			•				•	501
	3.2.4	ケーフ	ブル:	ネッ	١ <i>و</i>)解	析		•						•						•	505
	3.2.5	HP :	ンェル	屋机	艮の	解析	厅。	•						•						•		510
3.3	機械工	学·																				515
	3.3.1	ボイラ	が壁	の熱	枕门	力角	解析:	お。	よて	ブ												
		支持針	失骨の	地震	夏応	答角	解析															515
	3.3.2	ター 7	ド圧統	機习	羽根	車力	など	П	転	機	械	部。	딞	の								
		応力角	解析・								•			•	•						•	522
	3.3.3	自動車	巨外板	の 引	長り	剛力	生解	析						•	•	•		•				529
3.4	船舶工	学·						•			•						•				•	532
	3.4.1	概	説:										•	•					•	•		532
	3.4.2	船舶~	への実	際の	り応	用值	列·						•									532
3.5	航空宇宙	工学		•									•			•	•	•	•	•		541
	3.5.1	概	要.	•				•					•	•	•	•	•			•	•	541
	3.5.2	翼-胴	結合村	推造	の 原	じカ	解机	ſ	•	•			•				•	•			•	542
	3.5.3	航空机	幾の天	蓋	構造	の	解析	•			•	•	•				•		•	•	•	544
	3.5.4	翼構注	造の振	動角	解析			•			•		•	•	•	•	•	•	•	•	•	546
	3.5.5	開口の	のある	補引	鱼円	筒:	ンェ	ル	の	座	屈	解	析		•		•	•	•	•		548
3.6	原子工学	≐およ≀	 グプラ	ン	トエ	学										•				•	•	551
	3.6.1	有限	要素法	:K	よる	機器	器設	計														551
	3.6.2	配管	の応力	解材	沂・																	551
	3.6.3	容器の	の応力	解植	沂・			•									•				•	55 3
	3.6.4	熱応	力解析	î٠					•						•		•			•	•	556
	3.6.5	複雜	な構造	物	の応	力角	解析								•	•	•		•	•		566
	3.6.6	非弹位	生解析	i.					•		•				•	•	•		•	•		569
	3.6.7	そのも	他の重	要	な構	浩角	解析															574

9. 構造工学以外の分野への応用

1.	概	説 [581~585]
	1.1	有限要素法と物理学・・・・・・・・・・・・ 581
	1.2	物理学の基本法則・・・・・・・・・・・・・・582
	1.3	微分方程式、積分方程式および計算機シミュレーション・・・・585
2.	連続体	体力学の数学的基礎 [<i>586~594</i>]
	2.1	離散系と連続体・・・・・・・・・・・・・・・586
	2.2	ひずみ関数・・・・・・・・・・・・・・・587
	2.3	応力関数・・・・・・・・・・・・・・・・587
	2.4	構成方程式・・・・・・・・・・・・・・・・・587
	2.5	Green の積分 ・・・・・・・・・・・・587
	2.6	自己随伴,非自己随伴形微分式・・・・・・・・・・588
	2.7	変 分 原 理・・・・・・・・・・・・・・589
	2.8	境界値問題・・・・・・・・・・・・・・・590
	2.9	固有値問題・・・・・・・・・・・・・・・・592
	2.10	発展方程式 ・・・・・・・・・・・・・・・・・・593
3.	場理詞	論の定式化 [<i>595~607</i>]
	3.1	熱 伝 導・・・・・・・・・・・・・・・595
	3.2	物質移動(拡散)・・・・・・・・・・・・・・595
	3.3	理想流体のポテンシャル流れ・・・・・・・・・・597
	3.4	粘性流体力学・・・・・・・・・・・・・・・598
	3.5	非粘性,圧縮性流体力学・・・・・・・・・・・・599
	3.6	粘性,圧縮性流体力学・・・・・・・・・・・・・・601
	3.7	波 動・・・・・・・・・・・・・・・・・・602
	3.8	油 膜・・・・・・・・・・・・・・・・・・604
	3.9	電 磁 場・・・・・・・・・・・・・・・・605
4.		原理あるいは重みつき残差法あるいは選点法による 要素法の定式化 [<i>608~61</i> 7]
	4.1	概 説・・・・・・・・・・・・・・・・・・・・608
	4.2	重みつき残差法,Galerkin 法,変分法などの 分類ならびに位置づけ・・・・・・・・・・・・・・・・608
	4.3	重みつき残差法・・・・・・・・・・・・・・・・・610
	4.4	選 点 法・・・・・・・・・・・・・・・・・・610
	4.4 4.5	011

	4.7	重みつき残差法・・・・・・・・・・・・・・・・612	
	4.8	Galerkin 法 · · · · · · · · · · · · · · · · · ·	
	4.9	変 分 法・・・・・・・・・・・・・・・・613	
	4.10	時間依存系 ・・・・・・・・・・・・・・・・・・615	
	4.11	数値計算による諸計算法の比較・・・・・・・・・・・616	
5.	流体力	カ 学への応用 (I) [6	318 ~ 652]
	5.1	理想流体の非回転運動の解析・・・・・・・・・・・618	
	5.2	翼理論における有限要素法(特異点法)・・・・・・・・631	
	5.3	圧縮性流れ解析・・・・・・・・・・・・・・・・640	
	5.4	補 遺・・・・・・・・・・・・・・・・・・646	
6.	流体力	力学への応用 (II) [6	353 ~ 668]
	6.1	概 説・・・・・・・・・・・・・・・・・653	
	6.2	粘性流体への応用・・・・・・・・・・・・・・・653	
	6.3	浅水長波方程式に対する応用・・・・・・・・・・・・658	
7.	空力弹	単性,水力弾性への応用 [<i>6</i>	669 ~ 681]
	7.1	空力弹性・・・・・・・・・・・・・・・669	
	7.2	水力弹性・・・・・・・・・・・・・・・676	
8.	熱伝導	尊および高温強度問題への応用 [<i>6</i>	
	8.1	熱伝導の方程式・・・・・・・・・・・・・ 682	_
	8.2	Galerkin 法による有限要素法の定式化 · · · · · · · · · 683	
	8.3	汎関数を用いた有限要素法の定式化・・・・・・・・・685	
	8.4	非定常熱伝導問題の時間積分について・・・・・・・・686	
	8.5	高温強度問題の解析と評価の例・・・・・・・・・・686	
9.	移動現	見象 ,拡散問題 [<i>6</i>	199 ~ 711]
	9.1	移動現象概説・・・・・・・・・・・・・・・・699	
	9.2	拡散問題の有限要素解析・・・・・・・・・・・702	
10.	電磁	:気学の分野への応用 [7	[12 ~ 741]
	10.1	電磁場の解析・・・・・・・・・・・・・・・712	. –
	10.2	回路網と等価回路 ・・・・・・・・・・・・・・717	
	10.3	音 響 問 題 ・・・・・・・・・・・・・・・724	
	10.4	その他の応用 ・・・・・・・・・・・・・・ 731	

10. 境界要素法

1.	境界	要素法の基本概念	[745~751]
	1.1	まえがき・・・・・・・・・・・・ 745	
	1.2	研究の展望・・・・・・・・・・・・・・・・・745	
	1.3	BEM の基礎・・・・・・・・・・・・・ 746	
2.	弾 性	E 問題(I)	[752~763]
	2.1	3 次元弾性問題の解析・・・・・・・・・・・・ 752	
	2.2	平面問題の解析・・・・・・・・・・・・・・・755	
	2.3	立体平面問題の解析・・・・・・・・・・・・・756	
	2.4	軸対称体の解析・・・・・・・・・・・・・・ 757	
	2.5	物体力場および初期応力場の解析法・・・・・・・・759	
3.	弾 性	:問題(II)	[764~770]
	3.1	破壊力学問題の解析・・・・・・・・・・・・・764	
	3.2	接触問題の解析・・・・・・・・・・・・・・・ 765	
	3.3	異方性体の問題・・・・・・・・・・・・・・ 768	
	3.4	最適設計問題の解析・・・・・・・・・・・・769	
4.	弾 性	:問題(III)	[771~782]
	4.1	Saint-Venant のねじり問題・・・・・・・・・771	
	4.2	はりの曲げ問題・・・・・・・・・・・・・772	
	4.3	平板の曲げ問題・・・・・・・・・・・・・・775	
5.	材料	非線形問 題	[783 ~ 790]
	5.1	弾塑性問題・・・・・・・・・・・・・・・・・ 783	
	5.2	粘弾性問題・・・・・・・・・・・・・・・・ 788	
6.	熱応	力およびクリープ問題	[791~799]
	6.1	熱伝導問題・・・・・・・・・・・・・・・・ 791	
	6.2	熱弾性問題・・・・・・・・・・・・・・・794	
	6.3	熱弾塑性問題・・・・・・・・・・・・・・・・796	
	6.4	クリープ問題・・・・・・・・・・・・・・797	
7.	動的) 問題	[800~804]
	7.1	非定常動弾性解析・・・・・・・・・・・・800	
	7.2	定常動弾性問題・・・・・・・・・・・802	}

8.	連成	は問題の解析 [86	05~807]
	8.1	有限要素法と境界要素法の結合解法・・・・・・・・・805	
	8.2	構造と流体の連成問題の解析例・・・・・・・・・・806	
9.	解析	i 上 の諸問題 [86	08~811]
	9.1	角点における表面力不連続問題・・・・・・・・・・808	
	9.2	表面応力と内部応力の求め方の改良・・・・・・・・・809	
	9.3	誤差評価と数値積分の効率化・・・・・・・・・・810	
10.	基	本 解 [8.	12 ~ 816]
	10.1	1 次元問題 ・・・・・・・・・・・・・・・・812	
	10.2	2 2 次元問題 ・・・・・・・・・・・・・・・・813	
	10.3	3 3 次元問題 ・・・・・・・・・・・・・・・815	
11.	境界	マップ	17 ~ 825]
	11.1	渦 面 法 ・・・・・・・・・・・・・・・・818	
	11.2	! わき出しと二重わき出しを用いる方法 ・・・・・・・・818	
	11.3	わき出し、二重わき出し、渦の面分布 ・・・・・・・・820	
	11.4	Smith の流れを汲むパネル法・・・・・・・・・・821	
	11.5	。 渦 格 子 法 ······822	
	11.6	振動する揚力面 ・・・・・・・・・・・・・・・823	
	11.7	' Morino の方法への補遺 ・・・・・・・・・・824	
12.	境界	界要素法の非線形自由表面流問題への応用 [<i>8</i> 8	?6~831]
	付録	第 12 節, 式(6) の導出・・・・・・・・・・・829	
13.	おね	わりに	[832]
		11. コンピュータ・プログラミン	゚゙゙ヷ
1.	概	_	<i>35~845</i>]
	1.1	序 論・・・・・・・・・・・・・・・・・835	
	1.2	有限要素プログラムの調査・・・・・・・・・・・・835	
	1.3	有限要素プログラムと関連技術・・・・・・・・・・・840	

[1077~1109]

2.	入力	データ作成ルーチン [846~883]
	2.1	半自動分割の入力モジュール概要・・・・・・・・・846
	2.2	プログラムの説明・・・・・・・・・・・・・・853
3.	サン	プル・プログラム [<i>884~989</i>]
	3.1	概 要・・・・・・・・・・・・・・・・・・884
	3.2	CALLING TREE · · · · · · · · · · · · · · · · · ·
	3.3	使用上の制限・・・・・・・・・・・・・・・885
	3.4	インプット・カードフォーマット・・・・・・・・・886
	3.5	スクラッチ・ファイル一覧・・・・・・・・・・・・890
	3.6	プログラム説明・・・・・・・・・・・・・・・895
4.	出力	データの表示のためのサブプログラム DSPLAY [<i>991~1024</i>]
	4.1	概 要・・・・・・・・・・・・・・・・・・991
	4.2	使 用 法・・・・・・・・・・・・・・・・・991
	4.3	制限とエラーメッセージ・・・・・・・・・・・・993
	4.4	作図の説明・・・・・・・・・・・・・・・・・994
	4.5	プログラムのフロー・・・・・・・・・・・・・・995
	4.6	プログラムの説明・・・・・・・・・・・・・・・997
5.	固有	値解析のためのサブスペース法のプログラム [<i>1025~10</i> 7 <i>6</i>]
	5.1	はじめに・・・・・・・・・・・・・・1025
	5.2	引数の説明 ・・・・・・・・・・・・・・・・1026
	5.3	出力データ ・・・・・・・・・・・・・・・・・1028
	5.4	アルゴリズム ・・・・・・・・・・・・・・・・・1029
	5.5	プログラムの説明 ・・・・・・・・・・・・・・1031
	5.6	数値計算例 ・・・・・・・・・・・・・・・・1062

索

引