Contents

	Preface xi
	List of symbols xiii
1	Introduction 1
2	General results on the forward stability of recursion relations 4
	2.1 Background 4
	2.2 Homogeneous systems 6
	2.3 Nonhomogeneous systems 11
	2.4 The first-order scalar case; forward vs. backward recursion 12
	2.5 The computation of successive derivatives 14
	2.6 Scalar equations of higher order: minimal and dominan
	solutions 17
3	First-order equations used in the backward direction: the Miller
	algorithm 23
	3.1 Introduction: the algorithm 23
	3.2 Convergence and error analysis 25
4	Second-order homogeneous equations: the Miller algorithm 29
	4.1 The algorithm 29
	4.2 Reduction of the error by the use of asymptotic
	information 37
	4.3 Error analysis, the simplified algorithm: case of negative
	coefficients 38
	4.4 Error analysis, the general algorithm 45
	4.5 Algorithms based on continued fractions 46
	4.6 Minimal solutions and orthogonal polynomials 53
	4.7 The Clenshaw averaging process 57
5	Applications of the Miller algorithm to the computation of specia
	functions 61
	5.1 The confluent hypergeometric function $\Phi(a, c; x)$ 61
	5.2 The confluent hypergeometric function $\Psi(a, c; x)$ 63

	_		
VIII	ีนด	nte	nts

	5.3 The Gaussian hypergeometric function 70 5.4 Associated Legendre functions 73 5.5 The Legendre function $Q^{\mu}_{\nu}(z)$ 75 5.6 The Jacobi polynomials $P_n^{(i\eta,-i\eta)}(-i\omega)$ 75 5.7 Bessel functions 78 5.8 Zeros of Bessel functions 82 5.9 Eigenvalues of Mathieu's equation 82
6	Second-order nonhomogeneous equations: the Olver algorithm 6.1 Introduction: the algorithm 86 6.2 Solution by forward elimination (Method A) 90 6.3 The method of averaging (Method B) 94 6.4 The LU-decomposition (Method C) 96 6.5 Adaptation to general normalizing conditions 98 6.6 Conclusions 103
7	Higher-order systems: homogeneous equations 104 7.1 Observations on higher-order equations 104 7.2 The Miller algorithm 105 7.3 The matrix formulation: stability and weak stability 114 7.4 The Clenshaw averaging process 122 7.5 Topics for future research: infinite systems 128 7.5.1 Basic series for functions satisfying functional equations 128 7.5.2 Stieltjes moment integrals 131
8	Higher-order systems (continued): the nonhomogeneous case 8.1 Introduction 135 8.2 The Wimp-Luke method 137 8.3 The Lozier algorithm 139
9	The computation of ${}_{3}F_{2}(1)$ 152 9.1 The recursion 152 9.2 The algorithm; truncation error 154 9.3 Computing the Beta function 157 9.4 Another ${}_{3}F_{2}(1)$ 158
.0	Computations based on orthogonal polynomials 161 10.1 Preliminaries: properties of some orthogonal polynomials 161 10.1.1 Chebyshev polynomials 161 10.1.2 Jacobi polynomials 163 10.2 Evaluation of finite sums of functions which satisfy a linear homogeneous recurrence 165

	Index	- 8· -· r ·)
		ography 295
rr		x of higher mathematical functions discussed 293
Apr	endix	C Recursion formulas for hypergeometric functions 289
	B.2 B.3	The Olver growth theorems 282
	B.1	General theory 270 The construction of formal series solutions 272
	5 . 4	equations 270
App	endix	• •
App	endix	A The general theory of linear difference equations 265
	14.2	
	14.1	The computation of a class of trigonometric integrals 254
14	Highe	er-dimensional algorithms 254
	13.6	Solutions of linear functional equations 249
	13.5	
		An algorithm of Gatteschi 245
		Carlson's results 237
		Evaluation of certain infinite products 231
13		dimensional algorithms 229 General remarks: invariant curves 229
4.0		
		Divergence; strange attractors 219 Mean values 223
	12.2	·
	10.0	sequences 209
	12.1	Background: convergence properties of complex
12	Multi	dimensional recursion algorithms; general theory 209
		equations 202
	11.3	,
	11.2	11.2.3 The Lewanowicz construction 196
		11.2.2 The algorithms of Clenshaw and Elliott 188
		11.2.1 Introduction and basic formulas 186
	- · -	cients of Gegenbauer series 186
	11.2	
11		s solutions to ordinary differential equations 177 Taylor series solutions 178
11	Corios	colutions to outlinear differential equations 177
		10.2.3 Converting one expansion into another 172
		10.2.1 The algorithm 103 10.2.2 Error analysis; three-term recurrence 167
		10.2.1 The algorithm 165