		• ·	

CONTENTS

MODULE A APPLICABLE MATHEMATICS †

A1	Introduction to Applicable Mathematics 1 What is applicable mathematics? Motivation for using computers: Against the abuse of computer power
A2	Complex Numbers and Complex Exponentials 4
A2.1	Definitions: The algebra of complex numbers 4 Rules for complex numbers; Computers and complex numbers Complex numbers and geometry; Complex conjugation, modulus argument
A2.2	The complex plane: De Moivre's theorem 10 Cartesian and plane-polar coordinates; De Moivre's theorem
A2.3	Complex exponentials: Euler's theorem 13 Deriving Euler's theorem; Applying Euler's theorem
A2.4	Hyperbolic functions 15 Definition of hyperbolic functions; Circular-hyperbolic analogs
A2.5	Phase angles and vibrations 18
A2.6	Diversion: The interpretation of complex numbers 19
	Problems with complex numbers 20 Finding buried treasure; Proofs of De Moivre's theorem; Exponentials and th FFT; Exponential fun; Graphing hyperbolic functions; Analytic continuation
	References on complex numbers 21
A 3	Power Series Expansions 23

23

A3.1 Motivation for using power series

[†] Items in italics indicate extensive problems.

A3.2	Convergence of power series	24	
	The geometric series; Geometric	series	summed

- A3.3 Taylor series and their interpretation 27
 Proof of Taylor's theorem; Interpreting Taylor series
- A3.4 Taylor expansions of useful functions 29
 Expansion of exponentials; Series for circular functions;
 Hyperbolic function expansions
- A3.5 The binomial approximation 33

 The binomial approximation derived; Interpreting the binomial approximation; Applying the binomial approximation
- A3.6 Diversion: Financial interest schemes 35

Problems with power series 36

Complex geometric series; Proof by induction; Numerical geometric series, Series by analogy; Numerical exponentials; Logarithms in series; Euler and Maclaurin; Numerical cosines and sines; Financing solar energy

References on power series 39

A4 Numerical Derivatives, Integrals, and Curve Fitting 40

- A4.1 The discreteness of data 40 Numerical mathematics; Discreteness
- A4.2 Numerical noise 41
 Round-off error; Truncation error; Unstable problems and unstable methods; Subtractive cancellation; Numerical evaluation of polynomials
- A4.3 Approximation of derivatives 47
 Forward-difference derivatives; Central-difference derivatives;
 Error estimates for numerical derivatives; Numerical second derivatives
- A4.4 Numerical integration 51
 Trapezoid formula; The Simpson formula; Comparing trapezoid and Simpson formulas
- A4.5 Diversion: Analytic evaluation by computer 54

- A4.6 Curve fitting by splines 55
 Introduction to splines; Derivation of spline formulas; Algorithm for spline fitting; Spline properties; Development of splines and computers
- A4.7 The least-squares principle 61
 Choice of least squares; Derivation of least-squares equations; Use of orthogonal functions; Fitting averages and straight lines

Problems in numerical analysis 68

Round-off and truncation noise; Numerical convergence of series; Subtractive cancellation in quadratics; Comparison of polynomial algorithms; Numerical integration algorithms; Integral approximations to series; Natural splines have minimal curvature; Program for cubic splines; Orthogonal polynomials for least-squares fit; Stability of least-squares algorithms

References on numerical analysis 71

A5 Fourier Expansions 73

- A5.1 Overview of Fourier expansions 73

 Transformations; Nomenclature of Fourier expansions
- A5.2 Discrete Fourier transforms 75
 Derivation of the discrete transform; Properties of the discrete transform
- A5.3 Fourier series: Harmonic approximations 78
 From discrete transforms to series; Interpreting Fourier coefficients
- A5.4 Examples of Fourier series 80
 Square pulses; Fourier coefficients and symmetry conditions; The wedge function; Window functions; Convergence of Fourier series
- A5.5 Diversion: The Gibbs phenomenon 87
- A5.6 Fourier series for arbitrary intervals 88
 Interval scaling; Magnitude scaling
- A5.7 Fourier integral transforms 89
 From Fourier series to Fourier integrals; Applying Fourier integral transforms

A5.8 A fast Fourier transform algorithm 93

Derivation of FFT algorithm; Reordering the FFT coefficients;

Comparing FFT with conventional transforms

Problems on Fourier expansions 98
Relating Fourier coefficients through algebra; Relating Fourier coefficients through geometry; Smoothing window functions; Gibbs phenomenon and Lanczos damping factors; Dirac delta function; FFT in remote-sensing applications

References on Fourier expansions 100

- A6 Introduction to Differential Equations 101
 From the particular to the general
- A6.1 Differential equations and physical systems 101 Why differential equations? Notation and classification; Homogeneous and linear equations
- A6.2 Separable differential equations 104
 Relating student scores and work; Generalizing separable equations
- A6.3 First-order linear equations: World-record sprints 107 Kinematics of world-record sprints; Limbering up; Physics and physical activity; General first-order differential equation
- A6.4 Diversion: The logarithmic century 111 Interpreting exponential behavior; Bell's decibels
- A6.5 Nonlinear differential equations 114

 The logistic growth curve; Exploring logistic growth
- A6.6 Numerical methods for first-order equations 118
 Predictor formulas; Initial values for solutions; Stability of numerical methods

Problems on first-order differential equations 123

Acceleration and speed in sprints; World-class sprinters; Attenuation in solar collectors; Predictions from exponential growth; Belles, bells and decibels; Reaping Nature's bounty; The struggle for survival; Unstable methods for differential equations

References on differential equations 128

ontents	xix

A7	Second-Order Differential Equations		
	Why are second-order equations so common?		

- A7.1 Cables and hyperbolic functions 131 Getting the hang of it; Interpreting the cable parameter: Solving the cable differential equation; Exercises with catenaries
- A7 2 Diversion: History of the catenary 136
- A7 3 Second-order linear differential equations 136 Mechanical and electrical analogs; Solving the equations for free motion: Discussion of free-motion solutions
- A7 4 Forced motion and resonances 149 Differential equation with a source term; Alternative treatment by Fourier transforms: Resonant oscillations: The Lorentzian function
- A7.5 Electricity in nerve fibers 147 Modeling nerve fibers; Solution of the axon potential
- A7.6 Numerical methods for second-order equations 150 Euler approximations: Numerov's method for linear equations: Comparisons of Euler and Numerov algorithms
- A7.7 Solution of stiff differential equations 155 What is a stiff differential equation? The Riccati transformation

Problems on second-order differential equations 158 Cables and arcs; Suspension bridges; Properties of Lorentzians; Electricity in axons; Stability of Euler approximations; Madelung transformations for stiff equations

References on differential equations 162

163 **Applied Vector Dynamics A8**

- Kinematics in Cartesian and polar coordinates 163 A8.1 Polar coordinate unit vectors; Velocity and acceleration in polar coordinates
- Central forces and inverse-square forces 166 A8.2 Angular momentum conservation: Kepler's first law; Areal velocity: Kepler's second law

- A8.3 Satellite orbits 169
 Inverse-square force differential equations; Analytic solution of orbit equations; Some geometry of ellipses; Relation of period to axes: Kepler's third law
- A8.4 Diversion: Kepler's Harmony of the World 175
- A8.5 Summary of Keplerian orbits 176
 Kepler's three laws; The inverse-square laws from Kepler's laws

Problems on vector dynamics 178

Earth-bound projectiles; Electrostatic-force orbits; Solar properties;

Comets: Interstellar travel

References on vector dynamics 180

MODULE L LABORATORIES IN COMPUTING †

- L1 Introduction to the Computing Laboratories 182

 Analysis and simulation by computer; Coding is not programming is not computing; The programming languages; Exploring with the computer; References on languages
- L2 Conversion Between Polar and Cartesian Coordinates 185
- L2.1 Cartesian coordinates from polar coordinates 185
 Pascal program for conversion to Cartesian coordinates; Fortran program for conversion to Cartesian coordinates; Exercises on Cartesian from polar coordinates; Cartesian coordinates from polar coordinates
- L2.2 Polar coordinates from Cartesian coordinates 187
 Pascal program for conversion to polar coordinates; Fortran program for conversion to polar coordinates; Exercises on polar from Cartesian coordinates; Polar coordinates from Cartesian coordinates
- L3 Numerical Approximation of Derivatives 192
- L3.1 Forward and central difference methods 193
 Extrapolation to the limit

[†] Items in italics indicate extensive programming exercises.

L3.2 Exercises in numerical differentiation 194

Numerical derivatives program structure; Exercises on numerical derivatives; Numerical derivatives of simple functions; Extrapolating to the limit for derivatives; Second derivatives numerically estimated; Other differentiation techniques

References on numerical derivatives 197

- L4 An Introduction to Computer Graphics 198
 Why printer graphics?
- L4.1 Plotting using printers 199
 Formulas for scales and origins; Printer plotting procedure structure
- L4.2 Sample programs for printer plots 201
 Printer plots from Pascal; Printer plots from Fortran; Plotting exercises; Graphic examples, Improving your image; A pot-pourri of plots
- L4.3 Other graphics techniques 209 Video-screen and interactive graphics; Static graphics

References on computer graphics 210

L5 Electrostatic Potentials by Integration 212

- L5.1 Analytic derivation of line-charge potential 212
 Electrostatic potential of a line charge; On-axis potential of a line charge; Symmetries and reflections; Scaling the line-charge potential formulas
- L5.2 Line-charge potential using trapezoid formula 216
 Structure of the electrostatic potential program; Analytic evalution of the potential; Trapezoid program for line-charge potential
- L5.3 Potential integral from Simpson's formula 219 Simpson's formula exercises; Simpson program for line-charge potential
- L5.4 Displaying equipotential distributions 220
 Equipotentials of a line charge; Programming equipotentials; Using logarithmic scales for displays

T	.6	Monte-Carl	o Simu	lations	993

- L6.1 Generating and testing pseudo-random numbers 223
 Power-residue random-number generator; Random numbers in a given range; Program for array of pseudo-random numbers; The random walk
- L6.2 Stimulating simulations in mathematics 227
 Simulation of round-off errors; Random numbers and arithmetic error; Estimating integrals and areas; Estimating π by Monte-Carlo simulation
- L6.3 The approach to thermodynamic equilibrium 229
 Analytic method; Entropy and the approach to equilibrium;
 Monte-Carlo method; Program for approach to equilibrium
- L6.4 Simulation of nuclear radioactivity 235

 Analytic formula for radioactivity; Monte-Carlo simulation;

 Simulating radioactivity; Other Monte-Carlo simulations

Random references on Monte-Carlo methods 238

L7 Spline Fitting and Interpolation 239

- L7.1 Sample programs for spline fitting 239
 Structure of the spline procedures; Spline fitting from Pascal;
 Spline fitting from Fortran
- L7.2 Examples using splines 246

 Boundary condition and interpolation exercises; Natural and other spline boundary conditions; Interpolation using cubic splines; Exercises on spline derivatives; Derivatives from cubic splines; Spline integration exercises; Integration by cubic splines

References on spline fitting 249

L8 Least-Squares Analysis of Data 250

- L8.1 Straight-line fits with errors in both variables 250 Straight-line least squares; Least-squares formulas
- L8.2 Sample programs for straight-line fitting 253
 Straight-line fitting in Pascal; Fitting to straight lines from Fortran

L8.3 Quarks, radiocarbon dating, solar cells, and warfare 257 Evidence for fractional charges; Least-squares analysis of fractional charge data; Radiocarbon dating and Egyptian antiquities; Regression analysis of radiocarbon and historical dates; Solar cell efficiency in space; Degrading performance of solar cells; Is war on the increase? Least-squares analysis of battle deaths

A minimal reading list on least squares 263

L9 Fourier Analysis of an EEG 265

- L9.1 Introduction to encephalography 266
 What is an EEG? Salmon EEG and socioeconomics;
 The clinical record; Fourier analysis program structure
- L9.2 Frequency spectrum analysis of the EEG 269
 Coding the Fourier amplitude calculation; Fourier transform spectrum;
 FFT programs in Pascal and Fortran; Predicting voltages from Fourier amplitudes; Recomposing EEGs; Testing Wiener-Khinchin
- L9.3 The Nyquist criterion and noise 278

 The Nyquist criterion; Testing the Nyquist criterion; Effects of noise;

 Analyzing noise effects
- L9.4 Autocorrelation analysis of the EEG 280
 Properties of autocorrelations; Noise and autocorrelations;
 Autocorrelation analysis program

References on Fourier analysis and the EEG 283

L10 Analysis of Resonance Line Widths 285

- L10.1 A brief introduction to atomic clocks 285
 Atomic motions as clocks; Resonances and clocks
- L10.2 The inversion resonance in ammonia 287
 Microwave absorption experiments; Data for the ammonia inversion resonance
- L10.3 Fourier-transform analysis of a resonance 289

 Derivation of the transform relation; Interpreting the Fourier transform; Resonance analysis program structure; Exercises on resonance analysis; Resonance line width program

L10.4 Error analysis for the Fourier transform 294
Finite-range-of-data errors; Finite-step-size errors; Error analysis for integral transforms

References on resonances and atomic clocks 296

L11 Space-Vehicle Orbits and Trajectories 298

- L11.1 Space vehicles, satellites and computers 298
 Uses of space vehicles; Communications satellites; Data on Earth satellites
- L11.2 Numerical methods for orbits and trajectories 301
 For observables to orbital parameters; Program for orbits; Numerical integration for trajectories; Structure of the space-vehicle program;
 Program for trajectories; Files for space-vehicle data
- L11.3 Display of satellite orbits 309
 Geometry of the orbit display; Illusory ellipses

References on space vehicles and satellites 310

INDEX 313