

Contents

Preface		ix
Acknowled	dgments	, xi
Chapter 0.	Introduction	1
	Elementary examples	4
Chapter 1.	Fundamental Concepts	9
	Sets and set operations	12
	Cost functions and optimization problems	15
	Norms of vectors	18
	Local and global solutions	21
	Exercises	23
Chapter 2.	Existence Theory	25
	Topological properties of sets	27
	Sequences	34
	Bolzano-Weierstrass Theorem	42
	Existence of maxima and minima	51
	Exercises	54
Chapter 3.	One Dimensional Block Search Techniques	57
	Unimodal functions	57
	Block search	60
	Optimal search policies	65
	Efficiency of search techniques	73
	Resolution	81
	Golden section search	97
Chapter 4.	Linear Algebra and the Least Squares Problem	101
	Matrices	104
	Linear equations, inversion of matrices	114
	Transpose of a matrix, symmetric matrices	120
	Quadratic forms	123
	Least squares problem	128
	Fyercises	136

xiv	Contents
	•

Chapter 5.	Differentiation and Newton's Method Gradients and Jacobians Necessary condition for minimum Newton's method Hessian matrix Exercises	141 145 153 161 175 180
Chapter 6.	Convexity Convex functions and sets Sufficient condition for minimum Convexity and the Hessian Exercises	183 183 197 200 204
Chapter 7.	Bases and Eigenvectors Linear independence and dependence Subspaces of Rn Eigenvalues and eigenvectors Eigenvalues as constrained extrema of quadratic forms Orthonormal basis of eigenvectors of a symmetric matrix Diagonalization Exercises	209 209 213 220 229 234 237 241
Chapter 8.	Gradient Methods Description of the method Contraction fixed point theorem Local convergence of gradient method Slow convergence problems Acceleration of convergence Global convergence Path of steepest descent Exercises	245 245 249 256 267 272 279 284 293
Chapter 9.	Equality Constraints: Gradient Projection Normal and tangent space Lagrange Multiplier Theorem Gradient projection method A "space age" example Exercises	297 300 308 313 324 337
Chapter 10.	Linear Inequality Constraints Sets described by linear inequalities The dual basis Kuhn-Tucker conditions Gradient projection technique Examples Remarks on linear programming Degeneracy Exercises	341 343 349 351 359 368 389 391 399