

CONTENTS

PREFACE

VOLUME I

SECTION 1 Phase Change Problems

1.	"Grid generation for dendritic growth simulations on deforming elements"	5
2.	M.P. KANOUFF "Weld pool modeling"	15
3.	D. LOYD and B. KARLSSON "Heat transfer at cabinet walls containing phase change material"	27
3.	J. CALDWELL "Numerical solution of one-dimensional melting/solidification model problems	39
5.	R.O. STAFFORD, J.W. KLAHS, D.F. PINELLA "Numerical Methods for solidification simulation"	62
6.	M. REZAYAT and T.E. BURTON "Combined boundary-element and finite-difference simulation of cooling and solidification in injection moulding"	84
7.	M.J. BURTON and R.J. BOWEN "Modelling ice plug formation in cryogenic pipe freezing"	96

8.	R. HAMAR, and S. THIBAULT "Modelization of thermal transfer in D.T.A. cell"	108
9.	N. KITAHARA, H. YANO and A. KIEDA "Approximate Solutions with heat polynomials for Stefan problem"	120
10.	B. CARRUPT. JL.DESBIOLLES and M. RAPPAZ "FDM simulation of the surface treatment of materials by laser"	132
11.	C.A. Van der STAR "The application of the enthalpy method to phase change problems in annuli"	143
12.	M. CARMIGNANI, A. MASNATA, V. RUISI, A. TORTORICI ''A mathematical model of thermal cycles in welding'	154
13.	Z. ABDULLAH and M. SALCUDEAN "Computation of casting solidification in the presence of natural convection"	164
14.	S. LIN, C.K. KWOK, W.L.DAI "A study on the short-time starting temperature profile for numerical solution of phase change problems"	176
15.	A.F.A. HOADLEY, T.J. SMITH and D.M. SCOTT "The incorporation of natural convection effects in solidification simulation"	185
16.	A.K. PANI and P.C. DAS "Finite element approximation to a class of one dimensional ablation problems"	198
SE	CTION 2 Heat Conduction	
1.	BENGT SUNDEN "Numerical prediction of transient heat conduction in a multi-layered solid with time-varying surface conditions"	207
2.	J.L. WEARING, C. PATTERSON, M.A. SHEIKH and A.G. ADBUL RAHMAN "A regular indirect boundary element method for heat conduction"	219

8.

3.	M.S. Ingber and A.K. MITRA "Solution of the transient heat conduction problem in zoned-homogeneous media by the boundary element method"	231
4.	S.M.CARTER, R.F. BARRON, R.O. WARRINGTON and R.P. KOBS "The boundary element method applied to cryosurgical probe tip design"	241
5.	<pre>CC WONG and R. K-T. WONG ''Numerical methods for solving the network model of three-dimensional diffusion problems''</pre>	253
6.	D. P. UPDIKE and A. KALNINS "Heat conduction in shells of revolution"	265
7.	D.A. KOUREMENOS, K.A. ANTONOPOULOS ''Numerical simulation of the thermal problem in hyperthermia treatments''	276
8.	LIU GAO-LIAN and ZHANG DAO-FANG "Numerical methods for solving inverse problem of heat conduction with unknown boundary based on variational principles with variable domain"	284
SI	ECTION 3	
	ECTION 3 atural and/or Forced Convection	n
		2 99
N	atural and/or Forced Convection K.H. WINTERS "Oscillatory convection in crystal melts:	
N .	K.H. WINTERS 'Oscillatory convection in crystal melts: The horizontal Bridgman process' A. HAHRMANN and W. NITSCHE 'Comparative numerical and experimental investigation on transient temperatures in convec-	299
N .	K.H. WINTERS "Oscillatory convection in crystal melts: The horizontal Bridgman process" A. HAHRMANN and W. NITSCHE "Comparative numerical and experimental investigation on transient temperatures in convectively heated non-homogeneous structures" T. FUSEGI and B. FAROUK "Turbulent natural convection-radiation inter-	299 311

6.	P.H. 00STHUIZEN and J.T. PAUL "Natural convective heat transfer across a cavity with elliptical ends"	356				
7	DANIEL DICKER "A mathematical study of a radial-wall heat exchanger"	368				
8.	<pre>I.M. RUSTUM and H.M. SOLIMAN "Developing heat transfer in internally finned tubes"</pre>					
9.	E. ZIMMERMAN and S. ACHARYA "Natural convection in an enclosure with a vertical baffle"	392				
10.	T. ITO and M. YAMAGUCHI A numerical study of turbulent forced-convection heat transfer to supercritical helium"	404				
11.	C.T. NGUYEN and N. GALANIS "Combined forced and free convection for the developing laminar flow in horizontal tubes under uniform heat flux"	414				
12.	LAI-CHEN CHIEN "Forced convection heat transfer from the flow around an impulsively started sphere"	426				
13.	T. KOBAYASHI and Y. MORINISHI "A numerical experiment of incompressible turbulent swirling flow in rectangular straight pipe"	437				
14.	P. ANDRE, J. BATINE and R. CREFF "Study of the thermal fluid field for pulsed flows with compressible fluids"	448				
15.	J.C. DUH and WEN-JEI YANG "Effects of Prandtl number on transport phenomena in evaporating sessile drops"	459				
16.	J. MAQUET, G. GOUESBET, A. BERLEMONT "A computer code for natural convection in an enclosed cavity with a free surface"	472				
17	K. NOTO and R. MATSUMOTO "Breakdown of the Karman vortex street due to natural convection (case from an elliptical cylinder whose major axis oriented at right angle to main stream)	484				

18.	N. TOSAKA and H. FUKUSHIMA "Numerical simulations of laminar natural convection problems by the integral equation method"	500
19.	R.W. KNIGHT and M.E. CRAWFORD "Simulation of convective heat transfer in pipes and channels with periodically varying cross-sectional area"	512
20.	D. KUHN and P.H. OOSTHUIZEN "Transient three-dimensional natura; convective flow in a rectangular enclosure with two heated elements on a vertical wall"	524
21.	S. LAVOIE, T.H. NGUYEN and C.A. LABERGE "Heat transfer by natural convection between two concentric cylinders"	536
22.	P.GUANG MAO and T. HUNG NGUYEN ''Higher-order accurate numerical solution to the problem of natural convection in a rectangular cavity''	547
23.	M.A. KALAM and R. KUMAR "Numerical study of laminar natural convection in vertical annuli"	559
24.	K. NOTO and R. MATSUMOTO "Three-dimensional natural convection heat transfer from a single plate"	571
25.	A.N. THORNHILL and E.K. GLAKPE "Turbulent natural convection in boundary-fitted coordinates"	586
26.	T. FUJII, S. KOYAMA and K. SHINZATO "Forced convection heat transfer inside a locally heated tube - numerical analysis as a conjugated problem"	597
27.	S. KOSHIZUKA, Y. OKA and Y. TOGO "An evaluation of three filtering methods applied to three higher-order difference schemes of convection"	609
28.	P. ROSA and F. PIRONTI Heat transfer natural convection steady state simulation by finite elements between vertical enclosed concentric cylinders'	621
29.	A.S. BARTOSIK, R. SOBOTINSKI and A.J. WANIK "Numerical prediction of heat transfer in fully developed pulsating turbelent flow"	632

SECTION 4

Heat and Mass Transfer

1.	L. IMRE, A. BITAI, Cs. HORVATH, S. SZENTGYORGYI & L. Banhidi "Thermal analysis of human body - clothing, environment system"	657
2.	J. A. TINKER "Modelling the thermal conductivity of multiphase materials containing moisture"	669
3.	G.J. ANDERS, H.S. RADHAKRISHNA, J.A. ROIZ "Numerical solutions to the heat transfer problem in the vicinity of underground power cables"	681
4.	V.R. VOLLER "A numerical method for analysis of solidification in heat and mass transfer systems"	693
5.	R. KOHONEN, T. OJANEN "Non-steady-state coupled diffusion and convection heat and mass transfer in porous media"	705
6.	L. ROBILLARD, H. WANG CHONG and P. VASSEUR "Multiple steady-states in a confined porous medium with localized heating from below"	717
7.	T. KODAMA and S. KOTAKE "Coarse-find mesh method for locally complex flows of heat and mass transfer"	728
8.	M. NOVAKOVIC, A. VEHAUC and Z. KOSTIC "Steady alternating state (SAS) numerical method for determination of heat and mass transfer between fluid streams"	738
9.	A.M. CRAWFORD, H.S. RADHAKRISHNA and K.C. LAU "Application of the integrated finite difference technique to heat transfer through unsaturated particulate media"	749

10.	G.A. CLUTE and A.M. CRAWFORD "SFM: A symmetrical four-well ates model"	761
11.	X. ZHANG, T. HUNG NGUYEN, R. KAHAWITA and PU WANG "Spectral and spectral-finite difference methods in wavenumber prediction of penetrative convection"	773
12.	F.C. LAI, F.A. KULACKI and V. PRASAD "Numerical study of mixed convection in porous media"	784
13.	N. KLADIAS and V. PRASAD "Numerical study for inertia and viscous diffusion effects on Bernard convection in porous media"	797
14.	D.A. KOUREMENOS, K.A. ANTONOPOULOS "Finite-difference solution of the transient bioheat transfer equation during local hyperthermia in inhomogeneous tissues containing arteries and veins"	811
15.	B. ZAPPOLI, C. MIGNON and N. MATHE "A pseudo compressible method for computing cavity flows with surface reaction"	821
16.	D.A. KOUREMENOS, J.G. KOULIAS AND K. A. ANTONOPOULOS "Heat and mass transfer in vertical annular two-phase counter-flow"	833
SE	CTION 5	
Fir	e and/or Combustion Simulatio	n
1.	T. NAKAMURA, T. OMORI, K. YASUSAWA, I. NAKAMACHI	845

•	and H. TANIGUCH! "Radiative heat transfer analysis in a forge furnace	11
2.	T.K. PHUOC and P. DURBETAKI ''Modeling mechanism of ignition phase transition'	857
3.	A. K. GUPTA and D.G. LILLEY 'The role of diagnostics for improved simulation of practical flowfields'	869
4.	L. POST A mathematical model of the combustion-chamber in a glass-furnace"	884

5.	T. SANO and S. KOTAKE "A rational algorithm for chemical kinetics; calculation of combustion flows"	896
6.	NEVIN SELCUK "Finite difference solution of three dimensional flux equations for radiative transfer in furnaces	907
7.	N. LARAQUI and J. BRANSIER C. VOVELLE, J.L. DELFAU and M. REUILLON Modelling of the thermal degradation of vertical PMMA slabs"	918

4

Å