CONTENTS

Cor	NTRIBUTORS
Pre	FACE
1.	APPLICATION OF THE FINITE ELEMENT METHOD. By R. W. Clough and H. Petersson
2.	SOME ASPECTS OF THE MATHEMATICS OF FINITE ELEMENTS. By J. R. Whiteman
3.	Basis Functions for Curved Elements in the Mathematical Theory of Finite Elements. By A. R. Mitchell
4.	OVERCOMING LOSS OF ACCURACY WHEN USING CURVED FINITE ELEMENTS. By R. McLeod
5.	BLENDING FUNCTION FINITE ELEMENTS FOR CURVED BOUNDARIES. By R. E. Barnhill
6.	A CONFORMING RECTANGULAR PLATE ELEMENT. By D.S. Watkins
7.	FINITE ELEMENT METHODS IN HEAT CONDUCTION PROBLEMS. By M. Zlámal
8.	CONFORMING FINITE ELEMENT METHOD FOR THE SHELL PROBLEM. By P. G. Ciarlet
9	THE SELFADAPTIVE APPROACH IN THE FINITE ELEMENT METHOD. By I. Babuška
10.	A VARIATIONAL METHOD FOR FREE BOUNDARY PROBLEMS. By M. J. O'Carroll and H. T. Harrison
11.	CONTINUOUS AND DISCONTINUOUS FINITE ELEMENT METHODS FOR SOLVING THE TRANSPORT EQUATION. By P. Lesaint
	ERROR BOUNDS FOR LINEAR INTERPOLATION ON TRIANGLES. By J. A. Gregory
13.	A FINITE ELEMENT SOLUTION OF DEGENERATE INTERFACE PROBLEMS. By G. H. Meyer and G. Sewell 1
14.	ON THE ACCURACY AND STABILITY OF THE FINITE ELEMENT APPROXIMATION FOR PARABOLIC AND HYPERBOLIC OPERATORS.
	By A. Cella

xii CONTENTS

15.	ON THE DISCRETIZATION OF THE TIME VARIABLE IN PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS. By N. R. Nassif	191
16.	ERROR ESTIMATES FOR FINITE ELEMENT SOLUTIONS OF HEAT TRANSFER PROBLEMS IN THE SPACE-TIME DOMAIN. By M. M. Cecchi	201
17.	A GENERALIZATION OF FINITE ELEMENT METHOD TO DYNAMIC VISCOELASTIC ANALYSIS. By J. Brilla	209
18.	A FINITE ELEMENT METHOD FOR SOLVING NON LINEAR BOUNDARY VALUE PROBLEMS. By H. Froidevaux	217
19.	PARAMETRIC HERMITEAN ELEMENTS WITH REDUCED SET OF UNKNOWNS. By V. Hoppe	225
20.	NEWTONIAN AND NON-NEWTONIAN VISCOUS INCOMPRESSIBLE FLOW. TEMPERATURE INDUCED FLOWS. FINITE ELEMENT SOLUTIONS. By O. C. Zienkiewicz, R. H. Gallagher and P. Hood	235
21.	DISCONTINUOUS FINITE ELEMENT APPROXIMATIONS FOR THE ANALYSIS OF ACCELERATION WAVES IN ELASTIC SOLIDS. By J. T. Oden and L. C. Wellford, Jr	269
22.	THE NATURAL FACTOR APPROACH IN THE DISPLACEMENT METHOD —FOUNDATION AND FURTHER DEVELOPMENTS. By J. H. Argyris and O. Brønlund	287
23.	THE USE OF THE FINITE ELEMENT METHOD IN OBTAINING SOIL—WATER PRESSURE AND SOIL—WATER CONTENT DISTRIBUTIONS IN DRAINED LAND WITH A UNIFORM STEADY RAINFALL INCIDENT ON THE SURFACE. By A. B. Gureghian and E. G. Youngs	289
24.	FINITE ELEMENT SOLUTION OF TWO-DIMENSIONAL UNSTEADY AND UNSATURATED FLOW IN POROUS MEDIA. By G. Zyvoloski and J. C. Bruch, Jr	299
25.	An Application of Least Squares Finite Element Methods to Two Dimensional Steady Inviscid Compressible Flow without Conservation of Mass or Vorticity. By W. S. Blackburn	309
26.	THE MERIDIONAL THROUGH-FLOW CALCULATION IN AN AXIAL FLOW MACHINE BY THE FINITE ELEMENT METHOD. By Ch. Hirsch and G. Warzee	315
27.	COUPLED CONVECTIVE/CONDUCTIVE HEAT TRANSFER INCLUDING VELOCITY FIELD EVALUATION. By C. Taylor and A. Ijam	333
28.	THE PREDICTION OF FULLY DEVELOPED TURBULENT FLOW IN DUCTS BY THE FINITE-ELEMENT METHOD. By H. Barrow, R. P. Hornby and I. Mistry	349

CONTENTS	X111
CONTENIS	VIII

29.	A CRUCIFORM ELEMENT FOR THE ANALYSIS OF FABRIC STRUCTURES. By I. Torbe
30.	THERMAL AND STRESS ANALYSIS ON PRISMATIC NUCLEAR FUEL ELEMENTS. By H. Cords and W. Diemont
31.	SEMIDISCRETE GALERKIN TECHNIQUES WITH TIME INTERPOLATION AND SPLITTING UP FOR PLASMA SIMULATION. By R. England, J. P. Hennart and J. G. Martin
32.	On the Application of the Finite Element Method in Reactor Physics. By F. A. R. Schmidt, H. P. Franke and E. Sapper
33.	Numerical Techniques for Convection/Diffusion Problems. By R. Piva and A. Di Carlo
34.	STIFFNESS MATRICES FOR THE GENERAL DEFORMATION (OUT-OF-PLANE AND INPLANE) OF CURVED BEAM MEMBERS BASED ON INDEPENDENT STRAIN FUNCTIONS. By A. B. Sabir
35.	DYNAMIC TRANSIENT LINEAR AND NONLINEAR BEHAVIOUR OF THICK AND THIN PLATES. By E. Hinton, D. R. J. Owen and D. Shantaram
36.	Iterative Solution of Linear Systems Arising from Finite Element Techniques. By D. M. Young
37.	On the Solution of some Nonlinear Equations Arising in the Application of Finite Element Methods. By W. C. Rheinboldt
38.	A New Approach for Deriving "Good" Element Stiffness Matrices. By P. G. Bergan and L. Hanssen
39.	GENERAL SOLUTION ROUTINES FOR SYMMETRIC EQUATION SYSTEMS. By NE. Wiberg and H. Tägnfors
40.	Numerical Integration Considerations in Two and Three Dimensional Isoparametric Finite Elements. By T. K. Hellen 5
41.	REMOVAL OF TRUNCATION ERROR IN FINITE ELEMENT ANALYSIS. By C. W. Martin and A. J. Harrold
42.	ELEMENT RESEQUENCING FOR FRONTAL SOLUTIONS. By J. E. Akin and R. M. Pardue
43.	An Adaptive Computer Program for the Solution of Div $(P(X, Y)GRAD\ U) = F(X, Y, U)$ on a Polygonal Region. By G. Sewell
A U'	THOR INDEX
SUE	BJECT INDEX