·		

CONTENTS

Preface	•
Conference Organising Committee	vi
The Computational Mathematics Group	ix
Acknowledgments	×
INVITED PAPERS	1
RECENT DEVELOPMENTS IN THE FINITE ELEMENT METHOD A. R. Mitchell	2
University of Dundee, Dundee, Scotland	
THE CHANGING SCENE IN COMPUTATIONAL FLUID DYNAMICS M. Holt	15
University of California, Berkeley, California, U.S.A.	
THE SIMULATION OF TIME DEPENDENT PROBLEMS USING BOUNDARY ELEMENTS	31
C.A. Brebbia	
University of Southampton, Southampton, England	
FINITE DIFFERENCE METHODS FOR FLUID FLOW R.W. Davis	51
National Bureau of Standards, Washington D.C., U.S.A.	
MATHEMATICAL ANALYSIS AS THE FOUNDATION FOR SUCCESSFUL COMPUTATION	70
R.S. Anderssen	
CSIRO Division of Mathematics & Statistics, Canberra, Australia	
COMPUTATION IN INDUSTRY: ACHIEVEMENTS & POTENTIAL 4.O. Currie	91
Compumod Pty. Ltd., Sydney, Australia	

FINITE DIFFERENCE METHODS	105
THIRD-ORDER UPWINDING AS A RATIONAL BASIS FOR COMPUTATIONAL FLUID DYNAMICS B.P. Leonard	106
City University of New York, Staten Island, U.S.A.	
GENERALIZED VARIABLE GRID SIZE METHODS WITH APPLICATION TO THE DIFFUSION EQUATION R. Braddock	121
Griffith University, Queensland, Australia	
B.J. Noye University of Adelaide, Adelaide, South Australia	
THE NUMERICAL SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS USING THE METHOD OF LINES	139
N.G. Barton CSIRO Division of Mathematics & Statistics, Lindfield, Australia	
ADE METHODS FOR THE SOLUTION OF TWO-DIMENSIONAL PROBLEMS IN COMPUTATIONAL SOLIDIFICATION R.S. Anderssen & B.A. Ellem	151
CSIRO Division of Mathematics & Statistics, Canberra, Australia	
SOME ASPECTS OF THE NUMERICAL SOLUTION OF A STEADY STATE CONVECTION—DIFFUSION EQUATION	163
F. de Hoog & D. Jackett CSIRO Division of Mathematics & Statistics, Canberra, Australia	
A NEW METHOD OF DERIVING FINITE DIFFERENCE FORMULAS FOR ARBITRARY MESHES	173
S.K. Kwok University of Western Australia, Nedlands, Australia	
A NUMERICAL MODEL OF DROPLET FORMATION L.E. Cram	182
CSIRO Division of Applied Physics, Sydney, Australia	
FINITE ELEMENT METHODS	189
UPPER BOUND A-POSTERIORI ERROR ESTIMATES FOR THE FINITE ELEMENT METHOD APPLIED TO LINEAR ELASTICITY D.W. Kelly & J. Donovan	190
University of New South Wales Sydney Australia	

THE APPLICATION OF A FINITE ELEMENT PACKAGE TO ROAD VEHICLE AERODYNAMICS	207
P.D. Cenek Ministry of Works & Development, Wellington, New Zealand	
G.F. Fitz-Gerald & J.W. Saunders	
Royal Melbourne Institute of Technology, Australia	
GENERATION OF FINITE ELEMENT MESHES FROM NODAL ARRAYS M.B. McGirr, D.J.H. Corderoy, P.C. Easterbrook & A.K. Hellier University of New South Wales, Sydney, Australia	223
THE AUTOMATIC GENERATION OF ARRAYS OF NODES WITH VARYING DENSITY	229
M.B. McGirr & P. Krauklis	
University of New South Wales, Sydney, Australia	
THE PERFORMANCE OF AN AUTOMATIC, SELF-ADAPTIVE FINITE ELEMENT TECHNIQUE	236
M.B. McGirr, D.J.H. Corderoy, A.K. Hellier & P.C. Easterbrook University of New South Wales, Sydney, Australia	
ADAPTIVE TECHNIQUES IN FINITE ELEMENT ANALYSIS A.D. Miller	241
Australian National University, Canberra, Australia	
INCOMPRESSIBLE FLOW IN NOZZLES USING THE GALERKIN FINITE ELEMENT METHOD	256
T. Doan & R.D. Archer University of New South Wales, Sydney, Australia	
BOUNDARY INTEGRAL METHODS	263
BOUNDARY ELEMENTS IN FLUID MECHANICS M.B. Bush	264
University of Sydney, New South Wales, Australia	
THE EFFECT OF APPROXIMATING THE GEOMETRY FOR A SIMPLE BOUNDARY INTEGRAL EQUATION	277
W. McLean Australian National University, Canberra, Australia	
MESH GRADING FOR BOUNDARY INTEGRAL EQUATIONS G.A. Chandler	289
University of Queensland, Brisbane, Australia	

xvi Contents

NUMERICAL INTEGRATION OF A SINGULAR INTEGRAL EQUATION B.L. Karihaloo	297
The University of Newcastle, New South Wales, Australia	
A HYBRID DISTINCT ELEMENT — BOUNDARY ELEMENT METHOD FOR SEMI-INFINITE & INFINITE BODY PROBLEMS	307
B.H.G. Brady & M.A. Coulthard	
CSIRO Division of Geomechanics, Victoria, Australia J. V. Lemos	
University of Minnesota, Minneapolis, U.S.A.	
THE GROWTH OF FINGERS BETWEEN TWO IMMISCIBLE FLUIDS IN A TWO-DIMENSIONAL POROUS MEDIUM OR HELE—SHAW CELL	317
M.R. Davidson	
CSIRO Division of Mineral Physics, Sutherland, Australia	
A BOUNDARY ELEMENT FORMULATION FOR DIFFUSER AUGMENTED WIND TURBINES	327
E. Zapletal & C.A.J. Fletcher	
University of Sydney, New South Wales, Australia	
NUMERICAL METHODS FOR MULTIDIMENSIONAL INTEGRAL EQUATIONS	335
I.G. Graham	
University of Melbourne, Victoria, Australia	
FAST CONVERGENCE OF THE ITERATED GALERKIN METHOD FOR INTEGRAL EQUATIONS	352
I.H. Sloan	
University of New South Wales, Sydney, Australia	
OCEANIC & ATMOSPHERIC PROBLEMS	359
WAVE PROPAGATION CHARACTERISTICS OF A NUMERICAL MODEL OF TIDAL MOTION	360
B.J. Noye	
University of Adelaide, Adelaide, South Australia	
AN IMPROVED THREE-DIMENSIONAL TIDAL MODEL FOR A	
SHALLOW GULF	375
M. Stevens & B.J. Noye	
University of Adelaide, Adelaide, South Australia	

Contents	xvi
VERIFICATION OF A THREE-DIMENSIONAL TIDAL MODEL FOR COASTAL SEAS P.J. Bills & B.J. Noye University of Adelaide, Adelaide, South Australia	394
AN APPLICATION OF A THREE-DIMENSIONAL TIDAL MODEL TO THE GULF OF CARPENTARIA W.M. Mitchell, D.A. Beard, P.J. Bills & B.J. Noye University of Adelaide, Adelaide, South Australia	411
ON THE PERFORMANCE OF TURBULENT ENERGY CLOSURE SCHEMES FOR WIND DRIVEN FLOWS IN SHALLOW SEAS R.J. Arnold & B.J. Noye University of Adelaide, Adelaide, South Australia	425
WAVE HINDCAST MODELLING FOR BASS STRAIT D.R. Blackman & A.D. McCowan Monash University, Victoria, Australia	438
MODELLING SEICHES A.K. Easton Swinburne Institute of Technology, Victoria, Australia	449
THE DEVELOPMENT OF A FINITE ELEMENT COMPUTER PACKAGE FOR ATMOSPHERIC DYNAMICS K.J. Mann Chisholm Institute of Technology, Victoria, Australia	461
VISCOUS FLOW	475
A GENERALISED COORDINATE TIME-SPLIT FINITE ELEMENT METHOD FOR COMPRESSIBLE VISCOUS FLOW K. Srinivas & C.A.J. Fletcher University of Sydney, New South Wales, Australia	476
FINITE ELEMENT ANALYSIS OF VISCOUS FLOWS G.A. Mohr University of Auckland, Auckland, New Zealand	489
A UNIFICATION OF FINITE ELEMENT APPROACHES FOR PRIMITIVE VARIABLE SOLUTIONS TO VISCOUS INCOMPRESSIBLE FLOWS A.N.F. Mack University of Sydney, New South Wales, Australia	505

C	IME-SPLITTING & THE GROUP FINITE ELEMENT FORMULATION C.A.J. Fletcher University of Sydney, New South Wales, Australia	517
L	STEADY FLOW IN AXIALLY SYMMETRICAL PIPES D. Yashchin, M. Israeli & M. Wolfshtein srael Institute of Technology, Haifa, Israel	533
	THE EFFECT OF A SMALL BLOWING ON VORTEX-BREAKDOWN OF A SWIRLING FLOW C. Karashima	553
	nstitute of Space and Astronautical Science, Tokyo, Japan	
	. Kitama Jational Space Agency of Japan, Tokyo, Japan	
P	OROUS MEDIA, THERMAL PROBLEMS	565
Č	JUMERICAL TECHNIQUES FOR ESTIMATING THE BEHAVIOUR OF UNSTABLE, IMMISCIBLE FLOW IN POROUS MEDIA G.R.G. Woodham & D.F. Bagster University of Sydney, New South Wales, Australia W.V. Pinczewski	566
	Iniversity of New South Wales, Sydney, Australia	
F	FINITE ELEMENT APPROXIMATIONS OF UNIDIRECTIONAL NON-LINEAR SEEPAGE FLOWS 3-S. Chow	577
	Australian National University, Canberra, Australia	
	INEAR MODELS FOR MANAGING SOURCES OF GROUNDWATER POLLUTION M. Gorelick	591
	J.S. Geological Survey, California, U.S.A.	
	Å. Gustafson	
۲	loyal Institute of Technology, Stockholm, Sweden	
J.	IUMERICAL SOLUTION OF A FREE SURFACE DRAINAGE PROBLEM USING A VARIATIONAL INEQUALITY METHOD H. Knight	597
C	SIRO Division of Mathematics & Statistics, Canberra, Australia	

THERMAL PROFILES FOR HIGH-LEVEL RADIOACTIVE WASTE BURIAL J.M. Barry, P.C. Miskelly & J.P. Pollard Australian Atomic Energy Commission, Sutherland, Australia	604
ON A FINITE DIFFERENCE METHOD OF PLANE THERMOELASTIC PROBLEM IN MULTIPLY-CONNECTED REGION EXHIBITING TEMPERATURE DEPENDENCIES OF MATERIAL PROPERTIES Y. Sugano	615
University of Osaka Prefecture, Sakai, Osaka, Japan	
TURBULENCE, ACOUSTICS, PLASMAS	625
APPLICATION OF THE DORODNITSYN BOUNDARY LAYER FORMULATION TO WALL BLOWING R.W. Fleet & C.A.J. Fletcher University of Sydney, New South Wales, Australia	626
DIRECT SIMULATION OF BURGULENCE P. Orlandi & M. Briscolini Università degli Studi di Roma "La Sapienza", Italy	641
MODELLING TURBULENT RECIRCULATING FLOWS IN COMPLEX GEOMETRIES G.D. Tong Computer Applications Centre, S.A. Institute of Technology	653
PRACTICAL SOLUTIONS OF THE PARABOLIC EQUATION MODEL FOR UNDERWATER ACOUSTIC WAVE PROPAGATION D.J. Kewley, L.T. Sin Fai Lam & G. Gartrell Department of Defence, Adelaide, South Australia	669
ACOUSTICAL RADIATION IN MOVING FLOWS: A FINITE ELEMENT APPROACH R.J. Astley University of Canterbury, Christchurch, New Zealand	685
NUMERICAL MODEL OF A TWO -FLUID FULLY IONIZED DENSE PLASMA P. Lalousis CSIRO Division of Applied Physics, Sydney, Australia H. Hora University of New South Wales, Sydney, Australia	699
Cinversity of New Journ Wales, Syuffey, Australia	

XX Contents

SOLUTIONS OF ARC PLASMA DECAY WITH SELF-INDUCED RADIAL FLOW USING THE ORTHOGONAL COLLOCATION METHOD	709
H. Lee	
CSIRO Division of Applied Physics, Sydney, Australia	
FLUX-CORRECTED TRANSPORT ON A NON-UNIFORM MESH IN PLASMA BOUNDARY PROBLEMS	719
R. Morrow & L.E. Cram	
CSIRO Division of Applied Physics, Sydney, Australia	
SINGULAR FINITE ELEMENT METHODS IN PLASMA STABILITY COMPUTATIONS – A SIMPLE MODEL R.L. Dewar	730
The Australian National University, Canberra, Australia R.C. Grimm	
Princeton University, Princeton, New Jersey, U.S.A.	
DYNAMICS, STRUCTURES	741
SOLUTIONS OF SOME MIXED BOUNDARY PROBLEMS IN CONSOLIDATION THEORY	742
J.R. Booker & J.C. Small	
University of Sydney, New South Wales, Australia	
THE BEHAVIOUR OF A LINED CIRCULAR TUNNEL IN VISCOELASTIC GROUND	753
J.P. Carter & J.R. Booker	
University of Sydney, New South Wales, Australia	
COMPUTATIONAL IMPROVEMENTS OF THE DYNAMIC DEFORMATION METHOD	769
R. Kohoutek	
University of Melbourne, Victoria, Australia	
MACRO ELEMENTS FOR THE ANALYSIS OF BEAM—SLAB SYSTEMS B.W. Golley & J. Petrolito	785
University of New South Wales, Duntroon, Australia	
VIBRATION ANALYSIS OF A ROTATING BLADE USING DYNAMIC DISCRETIZATION	795
C. Norwood	
Footscray Institute of Technology, Victoria, Australia	

THE TIME SETTLEMENT BEHAVIOUR OF A RIGID RAFT SUBJECT TO MOMENT J.C. Small	803
University of Sydney, New South Wales, Australia	
A RELIABILITY-BASED OPTIMUM DESIGN COMPUTATIONAL TECHNIQUE FOR PLASTIC STRUCTURES D.M. Frangopol	812
University of Colorado, Boulder, Colorado, U.S.A.	
MISCELLANEOUS	825
AIRBLAST SIMULATION USING FLUX-CORRECTED TRANSPORT CODES D.L. Book	826
Naval Research Laboratory, Washington, D.C., U.S.A. M.A. Fry	
Science Applications Inc., McLean, Virginia, U.S.A.	
NUMERICAL SOLUTION OF EIGENVALUE PROBLEMS FOR ORDINARY DIFFERENTIAL EQUATIONS A.L. Andrew	841
La Trobe University, Victoria, Australia	
LINEAR PROGRAMMING METHODS FOR THE INVERSION OF DATA R.S. Anderssen	853
CSIRO Division of Mathematics & Statistics, Canberra, Australia SÅ. Gustafson	
Royal Institute of Technology, Stockholm, Sweden	
COMPUTING THE FOLIAGE ANGLE DISTRIBUTION FROM CONTACT FREQUENCY DATA	863
D.R. Jackett & R.S. Anderssen CSIRO Division of Mathematics & Statistics, Canberra, Australia	
Como Division of Mathematics & Statistics, Camberra, Australia	
THE MARKOV CHAIN TECHNIQUE APPLIED TO THE SURVIVAL OF VEHICLES IN A MINEFIELD I.S. Williams	873
Department of Defence, Canberra, Australia	
THE NONLINEAR COOLING OF A SEMI-INFINITE SOLID PADE APPROXIMATION METHODS A.J. O'Connor	881
Griffith University, Queensland, Australia	

OMPUTATIONAL ASPECTS ASSOCIATED WITH THE DIRECT USE OF INDIRECT MEASUREMENTS: REFRACTIVE INDEX OF BIOLOGICAL LENSES	893
R.S. Anderssen CSIRO Division of Mathematics & Statistics, Canberra, Australia M.C.W. Campbell	
R.S. Phy. S.S., Canberra, Australia	
PROBLEMS WITH DERIVED VARIABLE METHODS FOR THE NUMERICAL SOLUTION OF THREE-DIMENSIONAL FLOWS J.A. Reizes, E. Leonardi & G. de Vahl Davis University of New South Wales, Sydney, Australia	903
A HYBRID METHOD FOR SOLVING THE BOUNDARY VALUE PROBLEMS FOR HELMHOLTZ'S EQUATION IN TWO-DIMENSIONAL DOMAINS	914
A.P. Raiche & Z.K. Tarlowski CSIRO Division of Mineral Physics, North Ryde, Australia	
THE COMPUTATION OF AXISYMMETRICAL VORTEX SHEETS W.K. Soh	927
University of Wollongong, New South Wales, Australia	
EFFICIENT COMPUTATION OF THE MAGNETIC FORCES ACTING ON A CURRENT CARRYING COIL	938
P.M. Hart Monash University, Victoria, Australia	
COMPUTER SIMULATION OF COLD WORKING OF METALS W. Thompson, K. Denmeade & S. Barton Swinburne Institute of Technology, Melbourne, Australia	951
AN EXACT NUMERICAL ALGORITHM TO INVERT RATIONAL FRACTION LAPLACE TRANSFORMS L. P. Travis	964
Swinburne Institute of Technology, Melbourne, Australia	
ON THE PROBLEM OF A THROWN STRING A.M. Watts University of Queensland, Brisbane, Australia	971
CONFERENCE REGISTRANTS	976

