CONTENTS | Chapter 1 | Introduction | | | | |-----------|---|--|--|--| | | 1.1 The Finite-Element Method, 1 1.2 The Mathematics of Finite Elements, 2 1.3 The Present Study, 3 1.4 Notations and Preliminaries, 4 | | | | | | References, 5 | | | | | PART I M | ATHEMATICAL FOUNDATIONS | | | | | Chapter 2 | Distributions, Mollifiers, and Mean Functions | | | | | | 2.1 Introduction, 9 | | | | | | 2.2 Functionals and Test Functions on One- | | | | | | Dimensional Domains, 10 | | | | | | 2.3 Distributions, 14 | | | | | | 2.4 Locally Integrable Generators, Regular andSingular Distributions, 17 | | | | | | 2.5 Some Properties of Distributions, 20 | | | | | | 2.6 Distributional Differential Equations, 26 | | | | | | 2.7 Distributions and Generalized Functions in R ⁿ , 31 | | | | | | 2.8 Fourier Transforms, Rapidly Decaying Functions, and Tempered Distributions, 36 | | | | | | 2.9 Weak and Strong Derivatives in $L_p(\Omega)$, 45 | | | | | | 2.10 Mollifiers and Mean Functions, 46 | | | | | | References, 54 | | | | **CONTENTS** | Chapter 3 | Theory of Sobolev Spaces | 55 | |-----------|---|-----| | | 3.1 Introduction, 55 3.2 The Sobolev Space W_p^m(Ω), 55 3.3 Partitions of Unity, Boundaries, and Cone Conditions, 57 3.4 Some Properties of the Sobolev Spaces W_p^m(Ω) and W_p^m(Ω), 61 3.5 The Sobolev Integral Identity, 67 3.6 The Sobolev Embedding Theorems, 79 3.7 The Decomposition of W_p^m(Ω), 82 | | | | References, 88 | | | Chapter 4 | Hilbert Space Theory of Traces and Intermediate Spaces | 89 | | | 4.1 Introduction, 89
4.2 Hilbert Spaces $H^m(\Omega)$ of Integer Order, 90
4.3 Hilbert Spaces $H^s(\mathbb{R}^n)$ for Real $s \ge 0$, 92
4.4 Duals of Hilbert Spaces, 96
4.5 Duals of Spaces $H^s(\mathbb{R}^n)$ and $H^m(\Omega)$, 104
4.6 The Trace Theorem for $H^m(\mathbb{R}^n_+)$, 112
4.7 Intermediate and Interpolation Spaces, 121
4.8 Interpolation Theory in Hilbert Spaces, 128
4.9 Hilbert Spaces $H^s(\partial\Omega)$, 137
4.10 The Trace Theorem for $H^s(\Omega)$, 141 | | | | References, 143 | | | Chapter 5 | Some Elements of Elliptic Theory | 145 | | | 5.1 Introduction, 145 5.2 Linear Elliptic Operators, 146 5.3 Boundary Conditions, 152 5.4 Green's Formulas, 162 5.5 Regularity Theory in H^s(Ω), s ≥ 2m, 169 5.6 Compatibility Conditions—Existence and Uniqueness in H^s(Ω), s ≥ 2m, 176 5.7 Existence and Regularity Theory in H^s(Ω), s < 2m, 182 | | | | References, 192 | | CONTENTS xi | DA | DT II | THE THEORY | OF PINITER | THE PRICES WES | |----|--------|------------|------------|----------------| | PA | K I II | THE THEORY | COR RENIER | | | Chapter 6 | Finite-Element Interpolation | 197 | |-----------|---|-----| | | 6.1 Introduction, 197 6.2 Connectivity of Finite-Element Models of Domains Ω⊂Rⁿ, 198 6.3 Local and Global Representations of Functions, 206 6.4 Restrictions, Prolongations, and Projections, 215 6.5 Conjugate Basis Functions, 221 6.6 Finite-Element Families, 235 6.7 Accuracy of Finite-Element Interpolations, 264 | | | | References, 283 | | | Chapter 7 | Variational Boundary-Value Problems | 286 | | | 7.1 Introduction, 286 7.2 Formulation of Variational Boundary-Value Problems, 289 7.3 Coercive Bilinear Forms, 300 7.4 Weak Coerciveness, 310 7.5 Existence and Uniqueness of Solutions, 315 References, 321 | | | Chapter 8 | Finite-Element Approximations of Elliptic Boundary-
Value Problems | 323 | | | 8.1 Introduction, 323 8.2 Galerkin Approximations, 323 8.3 Existence and Uniqueness of Galerkin Approximations, 326 8.4 Finite-Element Approximations, 330 8.5 Properties of Finite-Element Subspaces, 334 8.6 Error Estimates, 342 8.7 Pointwise and L_∞(Ω) Error Estimates, 348 8.8 Quadrature, Boundary, and Data Errors, 350 | | xii CONTENTS 8.9 H⁻¹ Finite-Element Methods, 365 8.10 Hybrid and Mixed Finite-Element Methods, 368 | | References, 387 | | |-------------|---|-------------------| | Chapter 9 | Time-Dependent Problems | 390 | | | 9.1 Introduction, 390 9.2 Finite-Element Models of the Diffusion Equation, 391 9.3 Semidiscrete L₂ Galerkin Approximations, 393 9.4 Elements of Semigroup Theory, 395 9.5 Semigroup Methods for Galerkin Approximations, 401 9.6 Hyperbolic Equations of Second Order 9.7 First-Order Hyperbolic Equations, 41 | proxima-
, 409 | | | References, 418 | | | Author Ind | ex | 421 | | Subject Inc | dex | 423 |