Contents

Chapter 1	Fundamentals of Numerical Analysis	1
1.1	Numerical Methods and Their Basic Differences from	
	Analytical Solutions	1
1.2	Interpolation Methods	2
1.3	Numerical Integration	11
1.4	Difference Approximations and Difference Operators	15
1.5	Numerical Integration of Initial Value Problems of	
	Ordinary Differential Equations	19
1.6	Vector and Matrix	27
1.7	Linear Equations	31
1.8	Eigenvalues and Eigenvectors	35
1.9	Similarity Transformation and Jordan Canonical Form	42
Chapter 2	Computer Solutions for One-Dimensional Eigenvalue	
•	Problems	52
2.1	Boundary Value and Eigenvalue Problems Associated	
	with Ordinary Differential Equations	52
2.2	Finite Difference Approximations	54
2.3	Analytical Expression of Eigenvectors and Eigenvalues	
	for a Simple Problem	59
2.4	The Power Method	60
2.5	Wielandt Method	64
2.6	One-Dimensional Schroedinger Equations	66
2.7	One-Dimensional Multigroup Neutron Diffusion	
	Equations	70
2.8	Chebyshev Polynomial Methods	73
Chapter 3	Iterative Computational Methods for Solving Partial	
-	Differential Equations of the Elliptic Type	83
3.1	Partial Differential Equations of the Elliptic Type	83
¥		:

x Contents

3.2	Derivation of Finite Difference Equations	84
3.3	Iterative Solution Methods and Their Representations	
	in the Matrix Form	92
3.4	Convergence of Iterative Schemes	100
3.5	Basic Properties of Iterative Matrices	104
3.6	Properties of Jacobi Iterative Methods	110
3.7	Successive-over-relaxation (SOR) Methods	114
3.8	Cyclic Chebyshev Semiiterative Method	118
3.9	Strongly Implicit Method	123
3.10	Two-dimensional Neutron Diffusion Equations	130
Chapter 4	Numerical Solution for Partial Differential Equations of	
-	the Parabolic Type	139
4.1	Partial Differential Equation of the Parabolic Type	139
4.2	Derivation of Difference Equations	140
4.3	Stability of the Difference Equations	143
4.4	Truncation Error and Exponential Transformation	146
4.5	The Fourier Stability Analysis	149
4.6	Stability of Parabolic Equations with the Advective	
	Term	153
4.7	Two-dimensional Parabolic Equations	155
4.8	Numerical Solutions of Time-dependent Neutron	
	Diffusion Equations with Delayed Neutrons (One and	
	Two Dimensions)	157
Chapter 5	Computational Fluid Dynamics—I	169
5.1	Experiments or Computations	169
5.2	Derivation of Characteristic Equations for One-	
	dimensional Compressible Flow	171
5.3	Explicit Characteristic Method	175
5.4	Implicit Characteristic Method	179
5.5	Control Volume Method	187
5.6	Vorticity Method for Two-dimensional Incompressible	
	Flow	193
5.7	MAC Method	199
Chapter 6	Weighted Residual Methods and Variational Principle	207
6.1	Variational Principle as a Modern Computational Technique	207

Contents	хi

6.2	Weighted Residual Method	208
6.3	Variational Principle and Euler–Lagrange Equation	214
6.4	The Basic Functionals and Direct Methods	217
6.5	Variational Principle for Eigenvalue Problems	222
6.6	Boundary Conditions	225
6.7	Choice of Trial Functions and Use of Piecewise Polyno-	
	mials	231
6.8	Semidirect Method and Flux Synthesis	234
Chapter 7	Finite Element Methods	245
7.1	Finite Element Versus Finite Difference	245
7.2	Finite Elements and Piecewise Polynomials	246
7.3	Application of the Finite Element Method to an Elliptic	
	Partial Differential Equation	250
7.4	Finite Element Stress Analysis	258
7.5	Derivation of the Finite Element Equations for Viscous	
	Incompressible Fluid Flow	268
7.7	Solution of the Nonlinear Finite Element Equations for Fluid Flow	275
Chapter 8	Coarse-Mesh Rebalancing Method	285
8.1	Rationale of Coarse-Mesh Rebalancing	285
8.2	Partitioning and Weighting	287
8.3	Properties of Coarse-Mesh Rebalancing Equations	294
8.4	Theoretical Analysis of the Coarse-Mesh Rebalancing	
	Effect	299
8.5	Numerical Illustrations	317
8.6	Coarse-mesh Rebalancing Using Additive Corrections	327
Chapter 9	Monte Carlo Methods for Particle Transport and Heat	
	Transfer	333
9.1	Random Walk of Particles	333
9.2	Decision of Events by Random Numbers	336
9.3	Random Walk in the Phase Space	341
9.4	Scoring Methods	348
9.5	Integral Transport Equation and Random Walks	353
9.6	Adjoint Monte Carlo	354
9.7	Nonanalog Monte Carlo	357 365
9.8	Eigenvalue Problem	

xii	Contents

	9.9	Monte Carlo Method for Steady-state Heat-conduction	267
	9.10	Equations Monto Carlo Solution of Lanlage Equations via the	367
	9.10	Monte Carlo Solution of Laplace Equations via the Surface-density Technique	372
	9.11	Monte Carlo Method for Transient Heat Conduction	377
Cha	pter 10	Computational Fluid Dynamics—II	389
	10.1	Scope of Computer Simulations for Aerodynamic Flow	389
	10.2	Finite Difference Solution to Subsonic Aerodynamic	200
	10.2	Flow	390
	10.3	Transonic Thin Airfoil Perturbation Theory	397
	10.4	Iterative Solution of the Transonic Thin Airfoil Perturbation Equation	403
	10.5	Semiiterative Solution of the Transonic Equation	406
	10.6	Iterative Solution of the Exact Transonic Equation by	
	10.0	Successive Relaxation	413
	10.7	The Fast Direct Solution (FDS) Methods for the Pois-	
		son Equation	418
	10.8	The Fast Direct Solution (FDS) for the Cauchy–Rieman	
		Equation	423
Арр	endices		
I.	Adjoi	nt Equations and Their Physical Meaning	431
II.	•	nt Equation for the Surface Density Equation	444
III.		al for Triangular Finite Elements	446
IV.		ive Schemes for Implicit Methods of Characteristics	448
V.		rization Formula for the FDS Method	451
Ind	ex		453