CONTENTS

	Preface	vij
1	Introduction to the simulation method	1
	1.1 General background. Modelling	1
	1.2 Principal characteristics of Monte Carlo methods	1 3 8
	1.3 Simulation models. Classification	8
	1.4 A model of market fluctuations	10
	1.5 A model of a car washing station	12
	Exercises	15
2	Construction of simulation programs	16
	2.1 Basic approaches	16
	2.2 Data structures	23
	2.3 The implementation of event lists	31
	2.4 Simulation languages. SIMSCRIPT, GPSS and SIMULA	34
	2.5 Debugging of a simulation program	40
	Exercises	41
3	Simulation examples	42
	3.1 A versatile warehouse model	42
	3.2 The machine interference model	46
	3.3 A system with priorities	50
	3.4 A queueing network model	57
	Exercises	63
4	Pseudo-random number sequences	65
	4.1 Uniform variables	65
	4.2 Random sampling from different populations	69
	4.3 Statistical tests	76
	4.4 When to use what distribution	82
	Exercises	85
5	Collection and analysis of simulation data	86
	5.1 Estimation of parameters	86
	5.2 Confidence intervals	92
	5.3 Short-run and long-run performance	95
	5.4 The regenerative method	99
5	5.5 Estimating distributions	103
	Exercises	105

6 Va	riance reduction methods	106
6.1 Co	mmon random number streams	106
6.2 Re	placing random variables by their expectations	108
6.3 An	tithetic variates	111
6.4 Co	ntrol variables	113
Ex	ercises	115
7 De	sign and analysis of simulation experiments	116
7.1 A n	alysis of variance	116
7.2 Lir	ear regression	121
Ex	ercises	126
Appendix 1	A SIMULA primer	128
1. Ge	neral features. Input/output	128
2. Th	e class concept	133
3. Pre	fixing. Hierarchical structures	136
4. Cla	ss SIMSET	139
5. Cla	ss SIMULATION	143
6. Sy	stem-defined procedures	147
Appendix 2	A probability theory primer	150
1. Sar	nple points, events and probabilities	150
2. Ra	ndom variables	152
3. Me	an, Variance and Covariance. Inequalities	155
4. Be:	noulli trials. The geometric and binomial distributions	158
5. Th	e exponential distribution and the Poisson process	160
6. Th	e normal distribution and related topics	163
7. Sir	nple queueing systems	165
Tai	ples	169
Re	ferences	181
Inc	'ex	183