TABLE OF CONTENTS | | PREFACE | ٧ | |---|---|--| | | INTRODUCTION | 1 | | 1
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7 | Porous Media Flow | 7
7
9
19
25
26
28
41
43
47
50 | | 2
2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10 | The Cauchy Integral Formula Taylor Series | 53
53
53
56
58
59
60
62
68
69
75 | | 3.0
3.1
3.2
3.3
3.4
3.5 | MATHEMATICAL DEVELOPMENT OF THE COMPLEX VARIABLE BOUNDARY ELEMENT METHOD (CVBEM) Introduction Basic Definitions Characteristics of the Linear Global Trial Function The $\rm H_1$ Approximation Function Higher Order $\rm H_k$ Approximation Functions Using ϕ or ψ Functions as Boundary Conditions | 101
101
102
106
109
129 | | 4
4.0
4.1
4.2
4.3 | A COMPUTER ALGORITHM FOR THE COMPLEX VARIABLE BOUNDARY ELEMENT METHOD Introduction A Complex Variable Boundary Element Approximation Model The Analytic Function Defined by the Approximation $\widehat{\omega}(z)$ Program 2: A Linear Basis Function Approximation $\widehat{\omega}(z)$ | 156
156
156
176
185 | | 4.4
4.5 | A Constant Boundary Element Method Summary of Basic CVBEM Modeling Algorithm | 201
204 | | 5
5.0
5.1
5.2
5.3 | REDUCING CVBEM APPROXIMATION ERROR Introduction Application of the CVBEM to the Unit Circle Approximation Error from the CVBEM A CVBEM Modeling Strategy to Reduce Approximation | 210
210
210
217 | |---|--|--| | 5.4
5.5
5.6 | Error A Modified CVBEM Numerical Model Program 3: A Modified CVBEM Numerical Model Determining Some Useful Error Bounds for the CVBEM | 221
229
237
246 | | 6
6.0
6.1
6.2
6.3
6.4
6.5 | THE APPROXIMATIVE BOUNDARY Introduction Expansion of the H _k Approximation Function Upper Half Plane Boundary Value Problems The Approximative Boundary for Error Analysis Program 4: Analytic Continuation Model Locating Additional Nodal Points on F | 253
253
253
266
271
274
285 | | 7 7.0 7.1 7.2 7.3 7.4 7.5 7.6 | CVBEM MODELING TECHNIQUES Introduction Sources and Sinks Program 5: Source and Sink Model Regional Inhomogeneity Program 6: Nonhomogeneous Domain The Poisson Equation Computer-Aided-Analysis and the CVBEM | 295
295
295
297
298
303
324
325 | | 8
8.0
8.1
8.2
8.3
8.4
8.5 | CVBEM APPLICATIONS Introduction Modeling Nonuniform St. Venant Torsion Numerical Calibration of Domain Models Modeling Steady State, Advective Contaminant Transport A Simple Model of Soil Water Phase Change Modeling Two-Dimensional Steady State Soil | 334
334
334
343
353
358 | | | Freezing Fronts REFERENCES | 375 | | | LIST OF SYMBOLS | 331 | | | MATHEMATICAL NOTATIONS | 388 | | | | |