Contents | Chapter I | | |---|----------------------------------| | Generalities on Elliptic Variational Inequalities and on Their | | | Approximation | 1 | | Introduction Functional Context Existence and Uniqueness Results for EVI of the First Kind Existence and Uniqueness Results for EVI of the Second Kind Internal Approximation of EVI of the First Kind Internal Approximation of EVI of the Second Kind Penalty Solution of Elliptic Variational Inequalities of the First Kind | . 1
. 3
. 5
. 8
. 12 | | 8. References | 26 | | CHAPTER II Application of the Finite Element Method to the Approximation of Some Second-Order EVI | 27 27 27 | | Problem | 41
56
68 | | Plastic Fluid in a Pipe | 78
96 | | CHAPTER III On the Approximation of Parabolic Variational Inequalities | 98 | | 1. Introduction: References | 98
98
99
101 | Xii | 5. Approximation of PVI of the Second Kind6. Application to a Specific Example: Time-Dependent Flow Fluid in a Cylindrical Pipe | of a B | ingha | ım | . 103 | |--|--------|---------|-----------|-------------| | CHAPTER IV | | | | | | Applications of Elliptic Variational Inequality Methods of Some Nonlinear Elliptic Equations | to the | e Sol | ution
 | . 110 | | 1. Introduction | | | | | | 2. Theoretical and Numerical Analysis of Some Mildly Nonlin | near E | Ellipti | c | | | Equations | | | | . 110 | | 3. A Subsonic Flow Problem | | • | | . 134 | | Chapter V | | | | | | Relaxation Methods and Applications | | | | . 140 | | 1. Generalities | | | | . 140 | | 2. Some Basic Results of Convex Analysis | | | | . 140 | | 3. Relaxation Methods for Convex Functionals: Finite-Dimer | | | | | | 4. Block Relaxation Methods | | | | | | 5. Constrained Minimization of Quadratic Functionals in Hill | | | | | | Under and Over-Relaxation Methods: Application | | | | . 152 | | 6. Solution of Systems of Nonlinear Equations by Relaxation | Meth | ods | | . 163 | | CHAPTER VI Decomposition-Coordination Methods by Augmented La Applications | _ | _ | | . 166 | | 1. Introduction | | | | . 166 | | 2. Properties of (P) and of the Saddle Points of \mathscr{L} and \mathscr{L}_r . | | | | | | 3. Description of the Algorithms | | | | | | 4. Convergence of ALG 1 | | | | . 171 | | 5. Convergence of ALG 2 | | | | . 179 | | 6. Applications | | | | . 183 | | 7. General Comments | | ٠ | | . 194 | | CHAPTER VII Least-Squares Solution of Nonlinear Problems: Applica Problems in Fluid Dynamics | tion t | o No | nline | ar
. 195 | | 1. Introduction: Synopsis | | | | . 195 | | Least-Squares Solution of Finite-Dimensional Systems of E | | | | . 195 | | 3. Least-Squares Solution of a Nonlinear Dirichlet Model Pro | | | | . 198 | | 4. Transonic Flow Calculations by Least-Squares and Finite E | | - | - | | | 5. Numerical Solution of the Navier-Stokes Equations for Inc | | | | . 2.1 | | Viscous Fluids by Least-Squares and Finite Element Metho | | | | . 244 | | 6. Further Comments on Chapter VII and Conclusion | | | | | Contents | A successory I | | | | | | | | |--|--------|-------------|-------|------|------|------------|--------| | Appendix I A Brief Introduction to Linear Variational Probl | lems | | | | | | . 321 | | 1. Introduction | | | | | | | . 321 | | 2. A Family of Linear Variational Problems | | | | | | | . 321 | | 3. Internal Approximation of Problem (P) | | | | | | | . 326 | | 4. Application to the Solution of Elliptic Problems for | | | | | | | | | Operators | | | | | | | . 330 | | 5. Further Comments: Conclusion | ٠ | | | | | • | . 397 | | Appendix II | | | | | | | | | A Finite Element Method with Upwinding for Se | cond- | -Ord | er P | rob | len | 15 | | | with Large First- Order Terms | | | | | | | . 399 | | - | | | | | | | . 399 | | 1. Introduction | | | | | | | | | 2. The Model Problem | | | | | | | . 399 | | 3. A Centered Finite Element Approximation | • | | ٠ | • | ٠ | • | . 400 | | 4. A Finite Element Approximation with Upwinding | T.T | | • | • | ٠ | • | . 400 | | 5. On the Solution of the Linear System Obtained by | | | | | | | | | 6. Numerical Experiments | | | | | | • | . 404 | | 7. Concluding Comments | • | • | • | • | ٠ | • | . 414 | | | | | | | | | | | APPENDIX III | | | | | | | | | Some Complements on the Navier-Stokes Equation | tions | and ' | Thei | r | | | | | | | ana | | | | | . 415 | | Numerical Treatment | | | • | • | • | • | | | 1. Introduction | | | | | | | . 415 | | 2. Finite Element Approximation of the Boundary C | onditi | on u | = g | on] | □if | g ≠ | 0 413 | | 3. Some Comments On the Numerical Treatment of | the No | online | ear 🛚 | Tern | n (u | · V |)u 416 | | 4. Further Comments on the Boundary Conditions | | | | | | | . 417 | | 5. Decomposition Properties of the Continuous and | Discre | te St | okes | Pro | ble | ms | | | of Sec. 4. Application to Their Numerical Solution | ı . | | | | | | . 425 | | 6. Further Comments | | | | | | | . 430 | | V. I dittion Comments | | | | | | | | | Some Illustrations from an Industrial Application | n | | | | | | . 43 | | | | | • | · | • | | . 435 | | Bibliography | | | • | • | • | • | . 45 | | Glossary of Symbols | | | • | • | • | • | . 46 | | Author Index | | | • | • | • | • | | | Subject Index | | | | | | | . 46 |