Contents

1.	HIST	CORICAL INTRODUCTION	1
2.	STR	UCTURAL BACKGROUND	6
	2.1.	Stiffness analysis for simple spring systems	6
	2.2.	The principle of virtual displacements and element stiffness matrices	12
	2.3.	Finite element idealization of simple structures	20
		Derivation of field variables (stresses) from the calculated displacements	27
	2.5.	The relationship between the principle of virtual displacements and the principle of minimum potential	
		energy	31
	2.6.	Exercises and solutions	34
3.	VAR	IATIONAL METHODS	43
	3.1.	Classification of differential operators	43
	3.2.	Self-adjoint positive definite operators	45
	3.3.	The extremum formulation with homogeneous boundary conditions	48
	3.4.	Non-homogeneous boundary conditions: Dirichlet, Neumann, and mixed	54
	3.5.	The general second-order linear partial differential equation; natural boundary conditions	58
	3.6.	The Rayleigh-Ritz method	61
	3.7.	Functional for elasticity problems and the 'elastic analogy' for Poisson's equation	71
	3.8.	Variational methods for time-dependent problems	75
	3.9.	Weighted residual methods: collocation, least squares, and Galerkin	78
	3.10.	Exercises and solutions	86
4.	FINI	TE ELEMENT IDEALIZATION FOR FIELD	
	PRO	BLEMS	105
	4.1.	Difficulties associated with the application of the varia-	
		tional method	105
	4.2.	Piecewise application of the Rayleigh-Ritz method	106
	4.3.	Terminology	108
	4.4.	Finite element idealization	109
	4.5.	Illustrative problem involving one independent variable	115
	4.6.	Finite element equations for Poisson's equation	126

xii Contents

	4.7.	A rectangular element for Poisson's equation	136
	4.8.	A triangular element for Poisson's equation	142
	4.9.	Exercises and solutions	151
5.	HIG	HER-ORDER ELEMENTS AND THE	
	ISOF	PARAMETRIC CONCEPT	176
	5.1.	A two-point boundary-value problem	176
	5.2.	Higher-order rectangular elements	179
	5.3.	Higher-order triangular elements	180
	5.4.	Elements with more than one degree of freedom at each node	182
	5.5.	Condensation of internal nodal freedoms	186
	5.6.	Curved boundaries and higher-order elements: isoparametric elements	188
	5.7.	Exercises and solutions	195
6.		THER TOPICS IN THE FINITE ELEMENT HOD	206
	6.1.	Collocation and least-squares methods	206
	6.2.	Galerkin's method: equivalence with the variational method	209
	6.3.	Use of Galerkin's method for time-dependent and non-linear problems	214
	6.4.	Time-dependent problems using variational principles which are not extremal: Laplace transform	225
	6.5.	Exercises and solutions	232
7.	CON	IVERGENCE OF THE FINITE ELEMENT	
		HOD	248
	7.1.	A one-dimensional example	248
	7.2.	<u>-</u>	254
	7.3.	Isoparametric elements: numerical integration	256
	7.4.	Non-conforming elements: the patch test	259
	7.5.	Comparison with the finite difference method: stability	260
	7.6.	Exercises and solutions	265
ΑF	PENI	DIX 1: Some integral theorems of the vector calculus	275
		OIX 2: A formula for integrating products of area coor-	
		dinates over a triangle	277
ΑF	PENI	OIX 3: Numerical integration formulae	279
		ENCES	281
IN	DEX		285