CONTENTS

Chapter 1. INTRODUCTION

	1. Stability as a property of a family of systems	13
	2. The families of systems considered in the problem of absolute	
	stability	14
•	3. Selecting the most natural families of systems	16
	4. Introducing new families of systems	17
	5. The concept of hyperstability	18
	6. Indications on the use of the monograph	19
	Chapter 2. CLASSES OF EQUIVALENT SYSTEMS	
§ 1.	Equivalence classes for quadratic forms with relations between the variables	
	1. Transformations of quadratic forms with relations between the variables	24
	2. Successive transformations	26
	3. More about the group Q	27
	4. Partitioning of the set & into classes	28
	5. Other equivalence classes	29
§ 2.	Classes of single-input systems	
	1. The system	30
	2. Transformations	32
	3. Some particular transformations	36
	4. The polarized system and its properties	37
§ 3.	The characteristic polynomial of single-input systems	
	1. The characteristic function of single-input systems	39
	2. The characteristic polynomial and its properties	41
	3. Relations between the characteristic functions of systems belonging	
	to the same class	42
	4. Invariance of the characteristic polynomial under the transforma-	
	tions introduced in §2	43

§ 4.	Conditions under which all systems with the same characteristic polynomial belong to the same class	
	 Some supplementary assumptions	45 46 48 49 50
§ 5.	Equivalence classes for multi-input systems	
	 Definition and properties of the classes of multi-input systems. The characteristic function	54 58
	3. Properties of the determinants of $H(\lambda, \sigma)$ and $C(\sigma)$	61
	4. The characteristic polynomial and its invariance	63
	5. Systems with a fixed differential equation	64
§ 6.	Equivalence classes for discrete systems	
	1. Definition of the classes of discrete systems	69
	2. The characteristic function and the characteristic polynomial	72
	3. Relations between discrete systems with the same characteristic function	74
§ 7.	Equivalence classes for systems with time dependent coefficients .	75
	Chapter 3. POSITIVE SYSTEMS	
§ 8.	Single-input positive systems	
	1. Definition of single-input positive systems	79
	2. Theorem of positiveness for single-input systems	80
	3. Remarks on the theorem of positiveness	82 83
	5. The Yakubovich-Kalman lemma	89
	6. Special forms for completely controllable single-input positive	
	systems	90
§ 9.	Multi-input positive systems	
	1. The theorem of positiveness for multi-input systems	97
	2. Proof of the theorem	99
	 Generalization of the Yakubovich-Kalman lemma Special forms for multi-input positive systems 	106 106
8 1O	Discrete positive systems	
3 10.	1. The theorem of positiveness for discrete systems	109
	2. Proof of the theorem	110
	3. Generalization of the Kalman-Szegö lemma	112

§ 11.	Positive systems with time-dependent coefficients	113
§ 12.	Nonlinear positive systems	115
	Chapter 4. HYPERSTABLE SYSTEMS AND BLOCKS	
§ 13.	General properties of the hyperstable systems	
	1. Linear systems of class \mathcal{H}	118
	2. Hypotheses concerning the systems of class \mathcal{H}	119
	3. Other properties of the systems belonging to class ${\mathcal H}$	121
	4. Definition of the property of hyperstability	122
	5. A consequence of property H_s	124
	6. A sufficient condition of hyperstability	126
	7. Hyperstability of systems which contain "memoryless elements".	128
	8. The "sum" of two hyperstable systems	128
	9. Hyperstable blocks and their principal properties	131
§ 14.	Single-input hyperstable systems	138
§ 15.	Simple hyperstable blocks	157
§ 16.	Multi-input hyperstable systems	165
§ 17.	Multi-input hyperstable blocks	186
§ 18.	Discrete hyperstable systems and blocks	189
§ 19.	Hyperstability of more general systems	196
§ 20.	Integral hyperstable blocks	
	1. Description of completely controllable integral blocks	199
	2. Definition of the hyperstable integral blocks	201
	3. A method of obtaining the desired inequalities	202
	4. Hyperstability theorem for integral blocks	203
	5. Multi-input integral blocks	208
§ 21.	Lemma of I. Barbălat and its use in the study of asymptotic stability	210
§ 22.	Other methods for studying asymptotic stability	213
§ 23.	Conditions of asymptotic stability of single-input and multi-input systems with constant coefficients	227
§ 24.	Characterization of the hyperstability property by the stability of systems with negative feedback	235

Chapter 5. APPLICATIONS

§ 25.	stability	
	1. The absolute stability problem for systems with one nonlinearity.	240
	2. Definition of an auxiliary problem of hyperstability	242
	3. A frequency criterion	245
	4. Discussion of the condition of minimal stability	247
	5. Sufficient conditions for absolute stability	250
	6. Sufficient conditions for asymptotic stability	251
	7. Simplifying the frequency criterion	255
	8. Using hyperstable blocks to treat the problem of absolute stability.	257
	9. Determining the largest sector of absolute stability	261
1	0. Other generalizations of the problem of absolute stability	263
§ 26.	Determination of some Liapunov functions	
	1. Necessary conditions for the existence of Liapunov functions of	
	the Lur'e-Postnikov type	264
	2. Functions of the Liapunov type for systems with a single non-	
	linearity	270
§ 27.	Stability in finite domains of the state space	
	1. An auxiliary lemma	272
	2. Stability in the first approximation	273
§ 28.	Stability of systems containing nuclear reactors	275
§ 29.	Stability of some systems with non-linearities of a particular form	
	1. Systems with monotone non-linear characteristics	279
	2. Stability of a system with a non-linearity depending on two	
	variables	283
§ 30.	Optimization of control systems for integral performance indices	286
	Appendix A. CONTROLLABILITY; OBSERVABILITY; NONDEGENERATION	
§ 31. (Controllability of single-input systems	
	1. Definition of the complete controllability of single-input systems. 2. Theorem of complete controllability of single-input systems	291 293
	· · · · · · · · · · · · · · · · · · ·	

	3. Discussion	297
	4. Proof of the theorem	300
	5. Relations between single-input completely controllable systems.	310
§ 32 .	Single-output completely observable systems	312
§ 33.	. Nondegenerate systems	
	1. Definition of the property of nondegeneration and statement	
	of the theorem of nondegeneration	314
	2. Remarks on the theorem of nondegeneration	315
	3. Proof of the theorem of nondegeneration	315
	4. Bringing nondegenerate systems into the Jordan-Lur'e-Lefschetz	
	form	318
§ 34.	Controllability of multi-input systems	
	1. Definition and theorem of the complete controllability of multi-	
	input systems	319
	2. Proof of Theorem 1	322
	3. Other properties of completely controllable multi-input systems	328
§ 35.	Completely observable multi-output systems	330
§ 36.	Special forms for multi-input blocks	332
	Appendix B. FACTORIZATION OF POLYNOMIAL MATRICES	
§ 37.	Auxiliary propositions	350
§ 38.	Theorem of factorization on the unit circle	
	1. Statement of the theorem	356
	2. Preliminary remarks	357
	3. Some additional assumptions	359
	4. An asymmetrical factorization of the matrix $\lambda^n X(\lambda)$	360
	5. A family of factorization relations	361
	6. A special way of writing polynomial matrices	362
	7. A nonsingular factorization	363
	8. Properties of the nonsingular factorizations	365
	9. Bringing the nonsingular factorization to the form required in	
	Theorem 1	367
	10. More about Assumption (e)	369
	11. Eliminating restrictions (C) and (e)	370

§ 39.	The theorem of factorization on the imaginary axis	
	1. Statement of the theorem	376
	2. Definition of a matrix factorizable on the unit circle	377
	3. Relations between $\psi(s)$ and $\rho(\lambda)$	378
	4. Factorization of the imaginary axis	379
	Appendix C. POSITIVE REAL FUNCTIONS	381
	Appendix D. THE PRINCIPAL HYPERSTABLE BLOCKS	391
	Appendix E. NOTATIONS	393
	Appendix F. BIBLIOGRAPHY	395

