CONTENTS

Preface / v

1. Introduction / 1

- 1.1. The form and objectives of the book / 1
- 1.2. The reasons for automatic control/2
- 1.3. Which types of processes are most suitable for automation?/5
- 1.4. Development of the various tools for design of automatic control systems / 6
- 1.5. Planning and design of large industrial control systems / 7

2. Automatic Control: Theory and Structures / 9

- 2.1. Introduction / 9
- 2.2. Single variable process with feedback / 12
- 2.3. Feedforward control/23
- 2.4. Ratio control/29
- 2.5. Cascade control/31
- 2.6. Parallel control / 33
- 2.7. Model-based control/36
- 2.8. Multivariable control with the diagonal controller / 44
- 2.9. Decoupling / 54
- 2.10. Feedforward in multivariable system/58
- 2.11. Optimal control/60
- 2.12. Modal control/66
- 2.13. Multivariable control with state estimation / 68
- 2.14. Adaptive control/78
- 2.15. Predictive control/80
- 2.16. Steady-state and dynamic optimization of continuous production processes / 83
- 2.17. Practical design of process control systems / 89

3. Process Systems and Process Models / 93

- 3.1. General comments on process dynamics and models/93
- 3.2. Unit operations/94
- 3.3. Steady-state and dynamic characteristics / 95
- 3.4. Transport of liquids, solids, and gases / 101
- 3.5. Methods for adjusting particle size of bulk solids / 116
- 3.6. Mixing / 124
- 3.7. Separation processes / 131
- 3.8. Heat generation and heat exchange / 148

viii CONTENTS

- 3.9. Evaporators / 170
- 3.10. Crystallization / 175
- 3.11. Drying / 178
- 3.12. Distillation / 190
- 3.13. Refrigeration processes / 219
- 3.14. Chemical reactions / 226
- 3.15. Other processes /240

4. Process Control of Basic Functions / 241

- 4.1. Level control / 241
- 4.2. Pressure control / 247
- 4.3. Control of volume flow and mass flow / 254
- 4.4. Control of energy: temperature and enthalpy control/261
- 4.5. Control of concentration on the basis of pH measurement / 267
- 4.6. Control of concentration by means of viscosity measurement / 272
- 4.7. Control of the combustion process / 273

5. Process Control of the Common Unit Processes / 277

- 5.1. Control of mechanical separation processes / 277
- 5.2. Control of heat exchangers / 280
- 5.3. Control of evaporators / 298
- 5.4. Control of crystallization/303
- 5.5. Control of drying processes/306
- 5.6. Control of distillation columns / 314
- 5.7. Refrigeration cycle control/360
- 5.8. Control of chemical reactors / 363
- 5.9. Control of compressors / 375

6. Process Control in Large Industrial Complexes / 380

- 6.1. Process control in the pulp and paper industry/380
- 6.2. Control of processes for oil extraction and refining / 412
- 6.3. Process control in the petrochemical industry/427
- 6.4. Ammonia-based industry / 445
- Appendix A: Analysis and Design of Discrete Control Systems Using the Modified w-Transformation / 461
- Appendix B: Derivation of the Expression $(1 + (1 \hat{M})h_1, h_c)$ in Equation (2.7.11)/468
- Appendix C: Derivation of Interaction and Pairing of Variables in Multivariable Systems / 471
- Appendix D: Algorithms for Adaptive Control of Monovariable Processes / 476
- Appendix E: Robustness of Multivariable Control Systems / 479

Appendix F: Compression and Dynamics in Gas Systems / 482
 Appendix G: Velocity Profile Characteristics in Pipes / 485
 Appendix H: Development of Mathematical Models for Heat Exchangers / 488

Appendix I: Dynamic Model of a Boiler/503

Appendix J: Mathematical Model of Evaporators / 508

Appendix K: Mathematical Model of a Crystallization Process / 514

Appendix L: Mathematical Model of a Rotary Drum Dryer / 518

References / 521

Index / 531