

Contents

1.	THE	E MECHANISM OF HEAT CONDUCTION	1
	1.1	Fourier's Law of Heat Conduction	1
	1.2	Derivation of Basic Equation of Heat Conduction	2
	1.3	Steady-State Unidirectional Conduction	5
	1.4	Thermal Resistance of Composite Bodies	5
	1.5	Values of Thermal Conductivity	6
	1.6	J	7
		Values of Thermal Conductivity of Liquids	8
		Thermal Conduction in Solids	9
		Values of Thermal Conductivity of Solids	11
	1.10	Insulation	13
2.	RAD	DIANT HEAT TRANSFER BETWEEN SOLIDS	17
	2.1	Radiation Emitted by an Ideal Radiator	17
	2.2	Absorption, Reflection, and Transmission of Arriving Radiation	17
		Kirchhoff's Law; the Black Body	19
		Black-Body Radiation	20
	2.5	Radiation Characteristics of Real Surfaces	22
	2.6	Intensity of Radiation	24
	2.7	Radiation Interchange Between Black Surfaces	26
	2.8	Radiation Interchange Between Gray Surfaces	28
3.	CON	IVECTION HEAT TRANSFER	31
	3.1	Fluid Motion	31
	3.2	The Boundary Layer	31
	3.3	Definition of the Film Coefficient	33
		Convection Heat Transfer	33
	3.5	Dimensional Analysis	35
		Forced Convection in Conduits	37
			riii

xiv	Contents		
	3.7	Equations for Turbulent and Laminar Flow in Circular Conduits	39
	3.8	Natural Convection	40
4.	MET	THODS FOR CHANGING THERMAL CONDUCTANCE	46
	<i>1</i> 1	Introduction	46
		Parameters for Rating Heat Transfer Fluids	48
		Extended Surface Elements: Fins	51
		Determining Thermal Contact Resistance	54
		Fundamental Relations of Heat Exchangers and Cold Plates	57
5.	TEN	IPERATURE CONTROL: METHODS, ANALYSIS,	
-		TEMS	71
	- 1		71
		Introduction	71 71
:		Definitions Pagic Mathada of Tomporatura Control	71 72
		Basic Methods of Temperature Control Pasia Politicas for Thormal Design for Time Variable Temper	12
	3.4	Basic Relations for Thermal Design for Time-Variable Temperature-Control Systems	78
	5 5	Commanding Components of Control Systems; on-off and	70
	5,5	Proportional Control	80
	5.6	Arranging the Elements of a Temperature Control System	82
		Thermal Analogues	84
		Thévenin's Theorem	87
		Temperature Control Systems	90
		Introduction to Linear-System Mathematics	93
		Introduction to Nonlinear-System Mathematics	98
	5.12	Example Illustrating the Performance of a Controlled Mass	102
6.	ELE	CTRICAL RESISTANCE ELEMENTS	108
	6.1	Introduction	108
		The Wheatstone Bridge	109
		The Basic Wheatstone Bridge Equations	110
	6.4	Errors Caused by Lead Wire Resistance	112
	6.5	Three-Wire Connections	113
	6.6	Conductive Resistance Elements	114
	6.7	Resistance-Temperature Characteristic of Conductors	115
	6.8	Effects of Alloys and Impurities	118
		Effects of Mechanical Strain	119
		Semiconductive Resistance Elements	120
		Resistance-Temperature Characteristic for Thermistors	122
		Thermistor Self-Heating	122
	6.13	Some Relative Merits of Conductive and Semiconductive Resis-	10
		tance Flements	124

•	Contents	xv
7. E	LECTRONIC TEMPERATURE CONTROL EQUIPMENT	127
7.	1 Introduction	127
7.	2 The Silicon Controlled Rectifier	128
7.	3 The Unijunction Transistor	130
7.	4 The Magnetic Amplifier	133
7.	5 Electrical Resistance Heaters	136
7.	6 Blowers and Fans	138
8. M	ECHANICAL THERMOSTATS	143
8.	1 Introduction	143
8.	2 Bimetallic Elements	144
8.	3 Bending of Bimetallic Elements	145
8.		152
8.		152
8.	6 Deflections in Bimetallic Element Buckling	157
8.	7 Snap-Action Element Temperature Differential	158
8.	8 Bimetallic Element Construction	159
8.	9 Applications of Bimetallic Elements	160
8.	10 Comparison of Creep and Snap-Action Thermostats	162
	11 Self-Heating of Bimetallic Elements	164
8.	12 Mercury-in-Glass Thermostats	164
9. T	HERMOELECTRIC DEVICES	168
9.	1 Introduction	168
9.	2 Basic Steady-State Equations and Performance of Thermoelectric Refrigerators	170
9.		175
	4 Construction of Thermoelectric Cooling Modules	177
	5 Thermoelectric Modules in Cascade	179
9.	6 Temperature Control with and Dynamic Response of Thermo-	
	electric Modules	181
9.	7 Thermocouples for Measurement and Control of Temperature	184
10. C	ONTROL OF SPACECRAFT TEMPERATURES	187
10	0.1 Introduction	187
10	0.2 Terms in the Energy Balance Equation	188
10	0.3 Parameters of the Energy Balance Equation	193
10	0.4 Solution to the Energy Balance Equation	194
10	0.5 Methods of Spacecraft Temperature Control	196
10	0.6 Passive Control	197
10	0.7 Stability of Coatings in Space	198
10	0.8 Active Control of Effective Emissivity/Absorptivity	199
10	9.9 Active Control with Phase-Change Materials	202
Ir	ndex	209