

CONTENTS

		Page
Chapter 1	Computers in Engineering	1
1.1	Engineering, Computers and Numerical Methods	1
1.2	An Engineer's View of a Computer	5
1.3	Programming Languages	11
1.4	Programming a Problem Solution	14
1.5	Programs presented in the Book	16
Chapter 2	Matrix Algebra by Computers	18
2.1	Introduction	18
2.2	Elementary Matrix Operations	19
2.3	Solution of Systems of Simultaneous Linear Equations	34
2.4	Eigenvalue and Eigenvector Problems	72
2.5	Quadratic Forms	90
2.6	Matrix Representation of Extremum Problems	91
Chapter 3	Matrix Analysis of Simple Structural Systems	100
3.1	Introduction	100
3.2	Displacement Method – Truss	102
3.3	Computer Matrix Displacement Method	110
3.4	A Computer Program for Truss Analysis	125
Chapter 4		152
4.1	Introduction	152
4.2	Principle of Virtual Displacement	158
4.3	Principle of Minimum Potential Energy	164
4.4	Program for Static Analysis of Plane Frame Systems	178
4.5	Dynamic Problems	191
4.6	Program for Dynamic Analysis of Plane Frame Systems	198
Chapter 5	Approximate Methods of Solution	218
5.1		218
5.2	The Rayleigh-Ritz Method	218
5.3	The Galerkin Method	235
Chapter 6	The Finite Element Technique	250
6.1	Introduction	250
6.2	Extended Laplace Equation	257
6.3	A Program for the Solution of the Extended Laplace	
	Equation	272
6.4	Two-Dimensional Elasticity Problems	288
6.5	Computer Program for Finite Element Analysis of Plane	
	Stress Problems	295
6.6	Higher Order Elements	307

Chap	ter 7 Fluid Mechanics	322
	7.1 Introduction	322
	7.2 Governing Equations	324
	7.3 Perfect Fluids	326
	7.4 Applications in Hydraulics	338
	7.5 Flow through Porous Media	344
	Index	352
LICT		
LI21	OF PROGRAMS	
Chạp	oter 2	
1.	Transpose of a rectangular matrix (TRANR).	22
2.	Transpose of a square matrix (TRANS).	23
3.	Addition and subtraction of matrices (ADSUB).	24
4.	Multiplication of two matrices (ATIMB).	26
5.	Multiplication of two matrices, storing the results in the first	
	matrix (MATMA).	26
6.	Multiplication of two matrices, storing the results in the second	
	matrix (MATMB).	27
7,	Evaluation of $C = B^T A B$, using previous routines (BTAB1).	28
8.	Evaluation of $C = B^T AB$, without using previous routines	
0.	(BTAB2).	29
9.	Evaluation of $C = B^T A B$, storing the result in A (BTAB3).	29
10.	Multiplication of a matrix by a vector (MULTV).	31
11.	Solution of simultaneous linear systems of equations, by the Gauss	-
11.	elimination method, without allowing for row interchange	
		41
10	(SLPDS).	••
12.	Solution of simultaneous systems of equations, by the Gauss	44
4.0	elimination method, allowing for row interchange (SLNPD).	44
13.	Solution of simultaneous systems of equations, by the Gauss	
	elimination method, for positive definite symmetric matrices	4.5
	(SLSIM).	45
14.	Solution of simultaneous systems of equations, by the Gauss	5 1
	elimination method, for banded matrices (SLBNS).	51
15.	Solution of simultaneous systems of equations, by the Gauss	
	elimination method, for symmetric banded matrices (SLBSI).	52
16.	Inverse of a matrix by the Gauss elimination method (INVER).	55
17.	Decomposition of a symmetric matrix using Choleski's method	
	(DECOG).	59
18.	Decomposition of a symmetric banded matrix using Choleski's	
	method (DECOB).	60
19.	Solution of equations using Choleski's method (CHOLE).	61
20	Inverse of an upper triangle matrix (INVCH).	61

21.	Solution of equations using Gauss—Seidel iterative method	67		
22.	(SLGSG). Solution of symmetric banded matrices using Gauss—Seidel			
22	(SLESS).	70		
23.	First eigenvalue and eigenvector, by the Stodolla-Vianello method (EIGIS).	78		
24.	Computation of eigenvalues and eigenvectors, for a system of the			
25.	type $AX = \lambda X$, by the Jacobi method (JACOB). Computation of eigenvalues and eigenvectors, for a system of the	86		
	type $\mathbf{AX} = \lambda \mathbf{BX}$ (EIGG).	89		
Chap	oter 3.			
Prog	rams for static analysis of plane trusses			
26.	Main program.	128		
27. 28.	Data input (INPUT). Assembling of the total stiffness matrix (ASSEM).	130 133		
29.	Computation of the plane truss bar stiffness matrix (STIFF).	135		
30.	Addition of an element stiffness matrix to the total stiffness	100		
	matrix (ELASS).	136		
31.	Introduction of boundary conditions (BOUND).	141		
32. 33.	Evaluation of bar axial forces (FORCE). Result output (OUTPT).	145 146		
	1 ()	1.0		
Chap	oter 4.			
Prog	rams for static analysis of plane frame systems			
34.	Main program.	179		
35.	Input program (INPUT).	180		
36.	Evaluation of the plane frame member stiffness matrix (STIFF).	183		
37. 38.	Evaluation of member end forces (FORCE). Output program (OUTPT).	184 187		
		10.		
Prog	grams for dynamic analysis of plane frame systems			
3 9.	Main program.	200		
40.	Data input (INPUT).	201		
41.	Assembling of the total stiffness and mass matrices (ASSEM).	203 204		
42. 43.	Computation of the element mass matrix (EMASS). Addition of the element matrices into the total matrices (ELASS).	204		
43 .	Output program (OUTPT).	208		

Chapter 6

Prog	rams for the solution of the generalized Laplace's equation	
4 5.	Main program.	273
46.	Input program (INPUT).	274
47.	Computation of element matrices (STIFF).	276
48.	Routine for calculating the nodal variables derivatives (FORCE).	278
49 .	Output program (OUTPT).	279
Prog	rams for the solution of bidimensional elasticity problems	
50.	Main program.	296
51.	Input program (INPUT).	298
52.	Element stiffness matrix (STIFF).	300
53.	Evaluation of element stresses (FORCE).	301
54.	Output program (OUTPT).	303