Contents | | Preface
Notes to the Reader | xi
xv | |--|---|--| | The Concept of Energy
and the Role
of Energy in Society | 1.1 Introduction 1.2 The Use of Numbers. The Energy Problem as a Quantitative Problem 1.3 Growth, Exponential Growth, and the Depletion of World Oil Supplies 1.4 Supplementary Topics Further Questions | 2
6
20
31
43 | | Conservation of Mechanical Energy: Kinetic Energy and Gravitational Potential Energy | 2.1 Introduction 2.2 The Repetitive Behavior of a Swinging Pendulum 2.3 Kinetic Energy and Gravitational Potential Energy of a Vertically Thrown Ball 2.4 The Significance of g 2.5 Limitations on the Law of Conservation of Mechanical Energy 2.6 The Choice of a "Zero-Level" for Gravitational Potential Energy 2.7 Applications of the Law of Conservation of Energy 2.8 Projectile Motion 2.9 Newton's First Law of Motion: The Principle of Inertia 2.10 Another Look at the Pendulum, and a Summary Further Questions | 48
49
51
62
66
69
71
78
80
86
89 | | 3
Momentum,
Force and Work | 3.1 Introduction 3.2 Conservation of Momentum in Collisions 3.3 The Concept of Force. Newton's Second and Third
Laws of Motion | 92
93
106 | |--|--|---| | | 3.4 The Concept of Work. Work as a Measure of Energy Transfer Further Questions | 117
122 | | The Concept of Energy
and Three
Important Applications:
Hydroelectricity,
Transportation and Heating | 4.1 Energy and Power 4.2 Hydroelectricity 4.3 Transportation 4.4 Space Heating Further Questions | 126
135
145
157
168 | | Newton's Law of Universal Gravitation | 5.1 Formulation of the Law of Universal Gravitation 5.2 Gravitational Forces Exerted by Spherical Bodies 5.3 What is the Numerical Value of G? Why is g Equal to 9.8 m/sec²? 5.4 Applications of the Law of Universal Gravitation 5.5 Modification of the Expression for Gravitational Potential Energy 5.6 The "Escape Velocity" 5.7 What is the Source of the Sun's Energy? (An Interesting Idea That Does Not Work) 5.8 Conclusion Further Questions | 172
177
178
180
186
191
193
196
199 | | The First Law of Thermodynamics: The Generalization of the Law of Conservation of Energy | 6.1 Heat, Temperature, Temperature Scales, and Thermal Energy 6.2 The Nature of Heat. Joule's Determination of the "Mechanical Equivalent of Heat" 6.3 Thermal Energy and the Generalized Law of Conservation of Energy (The First Law of Thermodynamics). Closed and Open Systems 6.4 Logical Status of the Law of Conservation of Energy 6.5 What is "Thermal Energy"? The Behavior of Gases, the Ideal-Gas Temperature Scale, and "Heat as a Mode of Motion" 6.6 Summary | 202
209
214
220
224
235 | | | Further Questions | 236 | | The Second Law of Thermodynamics | 7.1 Order and Disorder. The Direction of Time 7.2 Heat Engines. The Thermodynamic Limit on the Efficiencies of Heat Engines 7.3 Refrigerators and Air Conditioners 7.4 A Summary View of the Second Law of Thermodynamics. Closed and Open Systems 7.5 Applications of Thermodynamics to Home Heating 7.6 Why is the Second Law Correct? The Operation of Chance at the Microscopic Level 7.7 Three Important Natural Laws: Newton's Law of Gravitation and the Two Laws of Thermodynamics Further Questions | 244
251
255
259
262
265
267 | |---|---|--| | Electrical Energy and Its Uses | 8.1 Introduction 8.2 Electrical Phenomena at the Microscopic Level 8.3 Electrical Phenomena and Electrical Energy at the Macroscopic Level. Conductors and Insulators, the Concepts of Electric Field Strength and Voltage 8.4 Batteries 8.5 Simple Battery-Operated Circuits 8.6 Uses of Electrical Energy: Battery-Operated Devices 8.7 Residential Use of Electrical Energy Further Questions | 272
273
277
285
291
298
303
313 | | Electromagnetism: The Generation and Transmission of Electrical Energy | 9.1 Magnetism and Magnetic Fields 9.2 Interactions of Electrical Currents and Magnetic Fields. The Operation of Electrical Meters and Motors 9.3 Induced EMF's, Faraday's Law and Electrical Generators 9.4 The Transmission of Electrical Power. The Importance of the Transformer Further Questions | 318
321
327
337
342 | | The Energy Problem: Past, Present, and Future Patterns of Energy Supply and Consumption | 10.1 The Consumption of Energy 10.2 Past and Present Sources of Energy 10.3 Uses of Energy in the United States 10.4 Future Patterns of Energy Supply Further Questions | 346
349
352
357
362 | | The Nature of Light and Other Types of Radiation, and the Earth's Energy Balance | 11.1 Fundamental Properties of Light 11.2 The Characteristics of Waves and the Wave Nature of Light 11.3 Of What is Light a Wave? The Maxwellian Synthesis of Electromagnetism and Optics 11.4 Sources of Electromagnetic Radiation. Black-Body Radiation 11.5 The Radiation Balance of the Earth, the Greenhouse Effect, and a Global View of Energy Transfers 11.6 The Photoelectric Effect and the Quantum Nature of Light Further Questions | 366
367
375
377
380
388
393 | |--|--|--| | 12 Atoms: Their Structure and Energy | 12.1 Introduction 12.2 Atomic Spectra and Atomic Energy Levels 12.3 The Role of Electrical Potential Energy in | 396
398
403
405
406
409
410 | | Radioactivity and Nuclear Physics | 13.1 The Discovery of Radioactivity 13.2 The "Energy Crisis" of Radioactivity and Its Resolution. Radioactive Decay 13.3 The Nucleus and Its Structure. Transmutation of the Elements in Radioactive Decay 13.4 Nuclear Energy. Stable and Unstable Nuclei 13.5 Nuclear Mass Defects, Changes in Mass, and the Relationship between Mass and Energy 13.6 The Peculiarities of β-Decay and the Discovery of the Neutrino 13.7 The Discovery of the Neutron Further Questions | 414
418
423
431
437
446
451
455 | | 14
Nuclear Fission
and Nuclear
Fission Power Plants | 14.1 Energy Available from Nuclear Fission and Fusion 14.2 Neutron Activation, The Search for Transuranium Elements, and the Discovery of Nuclear Fission 14.3 Further Details about Nuclear Fission | 458
461
463 | | | 14.4 Nuclear Fission Power Plants 14.5 Safety and Environmental Problems 14.6 Biological Effects of Radiation 14.7 Nuclear Breeder Reactors, the Inexhaustible | 466
470
473
476
482 | |-------------------------------|---|---| | 15
Nuclear
Fusion Power | 15.1 Introduction 15.2 Basic Scientific, Technological, and Resource Problems 15.3 Status of the Scientific and Technological Problems 15.4 Environmental Problems and Availability of Resources 15.5 Fusion: The Source of the Sun's Energy Further Questions | 486
492
495
506
510
513 | | 16
Solar Energy | 16.1 Solar Energy—the Truly Vast, Inexhaustible, and Clean Source of Energy 16.2 Possible Ways of Using Solar Energy 16.3 Windmills 16.4 Temperature Differences in the Oceans 16.5 Nature's Method: Photosynthesis 16.6 The Direct Generation of Electrical Energy: Solar Cells 16.7 Thermal Generation of Electrical Energy 16.8 Solar Heating 16.9 A Summary of the Entire Energy Problem Further Questions | 516
522
524
526
529
530
533
538
548
551 | | Appendixes | List of Contents Notes on Accuracy and Sources of Information A Units and Conversion Factors B Abbreviations and Symbols, Decimal Multiples, and Geometrical Formulas C Physical and Chemical Data D The Solar System E The Earth—Its Atmosphere, Continental Crusts, Oceans, Water Resources, and Large-Scale Flows of Energy F Solar Energy G Degree-Days H Energy Content of Fuels I Fossil Fuels—Resources and Production | 553
554
555
564
566
572
573
578
581
583
584 | | J | Nuclear Fission and Nuclear Fusion— | | |------|--|-----| | | Energy Resources | 589 | | K | The History of Energy Production and Consumption | | | | in the World and the United States | 591 | | L | Sources and Uses of Energy | | | | in the United States, 1973 | 600 | | M | Energy Requirements for Electrical Appliances | 608 | | Ν | Energy Requirements for Passenger and Freight | | | | Transportation | 609 | | 0 | Exponential Growth | 610 | | Р | Consumer Prices of Common Sources of Energy | 611 | | Q | Comparing Capital and Operating Costs. The Cost of | | | | Borrowing Money | 612 | | R | Radiation Exposure in the United States | 614 | | | | | | Inde | ay | 615 |