CONTENTS

PAR	Γ1 SU	RVEY		2.4	NUC	LEA	R ENERGY	44
CHAI	PTER 1	THE ENERGY- ENVIRONMENT PROBLEM	3		Fissio Breed Fusio	ler F	Reactors	
1.1	THE NA	TURE OF THE PROBLEM	3	PAR	T 2		VERGY CONVERSION	
	Trends a	ng Requirements and Projections Definitions g Time		СНА	PTER		ELEMENTS OF THERMODYNAMICS	61
1.2	CONTRI Population Technology		11	3.1			ST LAW OF DDYNAMICS	61
CHAI	PTER 2	ENERGY RESOURCES REVIEW	20		Conso Temp Heat		tion of Energy ture	
2.1	THE EA	RTH'S ENERGY FLOW	20	3.2	APPI	LICA	ATIONS OF THE FIRST LAW	66
2.2	THE FO	FOSSIL FUELS			Work Internal Energy		Energy	
Petroleun Coal					Ideal Gas Four Processes			
2.3	-	Petroleum Products SICAL ENERGY	35	3.3			COND LAW OF ODYNAMICS	72
	Hydroele Wind Pov Geotherm Solar Pov	wer nal Power			Entro	Carr opy	ility not Cycle Law Efficiency	

CHA	PTER 4 HEAT ENGINES	82	PAR	Γ3	HEAT GENERATION AND MANAGEMENT	
4.1	INTERNAL COMBUSTION ENGINES	82				
			CHAI	PTER	6 HEAT SOURCES	165
	The Otto Cycle Environmental Effects Catalytic Converters		6.1	COM	MBUSTIBLE FUELS	166
	Diesel Engines RotaryEngines			Synt Hydi	ics of Combustion hetic Hydrocarbons rogen	
4.2	TURBINES	98		Alco Fuel:	hols s from Wastes	
	Fluid Flow Enthalpy		6.2	GEO	THERMAL HEAT	190
	Properties of Real Substances The Rankine Cycle				hermal Resources lems with Geothermal Energy	
	Gas Turbines		6.3	SOL	AR HEAT	199
4.3	EXTERNAL COMBUSTION ENGINES	108		Radi	ation ation Power Tower	
4.4	REFRIGERATION	111		Solar	r Power Farms r Sea Power	
	The Refrigeration Cycle Heat Pumps				estic Applications	
CIIA	DTED & DIDECT COMMERCION	100	CHAI	TER	7 NUCLEAR POWER	229
СПА	PTER 5 DIRECT CONVERSION PROCESSES	123	7.1	INT	RODUCTION	229
5.1	CHEMICAL CONVERSION	123		Fissi	ear Power Policy on sification of Reactors	
	Batteries High-Performance Batteries		7.2		RMAL FISSION REACTORS	224
	Fuel Cells		1.4		iplication Factor	234
	Efficiency of Electrochemical Conversion	on		Neut	ron Physics	
5.2	PHOTOVOLTAIC CONVERSION	134			tor Control mercial Power Reactors	
	Solar Radiation Some Solid-State Physics		7.3	BRE	EDER REACTORS	250
	Solar Cells			Fast	ics of Breeding Reactor Parameters	
5.3	MAGNETOHYDRODYNAMICS	145			Reactor Control ent Breeder Reactor Designs	
5.4	WIND POWER	151	7.4	REA	CTOR SAFETY	261
	Physics of Wind Machines Wind Power Potential				ty Assurance ty History	

7.5	THE NUCLEAR FUEL CYCLE	270		-	age Transmission	
	Mining and Milling Enrichment Closing the Cycle				lucting Systems and Electric Power ission	
7.6	THERMONUCLEAR FUSION	292	9.3	TRANSM	ISSION OF FLUIDS	360
	Physics of Fusion Magnetic Confinement Inertial Confinement			Tanker Tr Pipelines Trans-Ala	ansport ska Pipeline	
CHAI	PTER 8 WASTE HEAT MANAGEMENT	309	СНАР	TER 10	ENERGY STORAGE	371
8.1	THERMAL EFFECTS	309	10.1	ENERGY ALTERNA	STORAGE ATIVES	372
	Effects of Heat on Water Quality Effects of Heat on Aquatic Life		10.2		NICAL ENERGY STORAGE	374
8.2	DISPERSAL OF HEAT	313		_	Hydrostorage	
	Heat on the Microscopic Scale Heat-Transfer Mechanisms			Compressed Gases Flywheels		
	Once-Through Cooling		10.3	CHEMIC.	AL ENERGY STORAGE	380
8.3	Cooling Towers USEFUL APPLICATIONS OF	326		Reversible Hydrogen	e Reactions	
	WASTE HEAT		10.4	ELECTRI	CAL ENERGY STORAGE	382
	Heat Quality Transportation of Heat Desalination			Electrostatic Energy Storage Inductive Energy Storage		
	Total Energy		10.5	THERMA	AL ENERGY STORAGE	386
8.4	MINIMIZING WASTE HEAT PRODUCTION	332		Sensible I Latent He	Heat eat Energy Storage	
	Topping Cycles					
DAD'	Tailing Cycles		CHAI	PTER 11	EFFICIENCY IN ENERGY USE	393
PAK	T 4 ENERGY UTILIZATION			- 01 (Ton		225
CHA	PTER 9 ENERGY TRANSMISSIO	ON 341	11.1		TIC AND COMMERCIAL CONSERVATION	395
9.1	ENERGY TRANSMISSION ALTERNATIVES	341		Policy Inf		
	Criteria for Selection			Operation	ı	
9.2	ELECTRICAL ENERGY TRANSMISSION	343	11.2	INDUST! CONSER	RIAL ENERGY VATION	408
	Review of Fundamentals AC Power Transmission			Industrial Recycling	Processes	

11.3	TRANSPO	ORTATION	412		Oxides of		
	Aspects of the Transport Problem Traffic Flow				Oxides of Nitrogen Indoor Air Pollution		
	Mass-Tran	ss-Transit Systems		13.3	SECONDARY AIR POLLUTION		490
Automobiles		es			_	ture Inversions mical Reactions	
PART		VIRONMENTAL		13.4	AIR POL	LUTION CONTROLS	495
DEGRADATION		GRADATION			Control Techniques Air Pollution Trends		
CHA	PTER 12	GLOBAL ENERGY	437				
		BALANCE		CHA	PTER 14	ENVIRONMENTAL RADIATION	504
12.1	NATURA	L ENERGY SOURCES	437			RADIATION	
	AND SINKS			14.1			504
	Energy Si					ION WITH MATTER	
12.2			444			f Radiation Loss Mechanisms	
12.2	MECHANISM FOR RADIATION SINKS		444		Radiation Chemistry		
	Absorptio	n		14.2	RADIAT	TON UNITS	514
	Scattering				Activity		
12.3	THE EARTH'S HEAT ENGINES Air Currents Ocean Currents		450		Exposure Absorbed Dose Dose Equivalent		
10.4			456	14.3	THE RA	DIATION BACKGROUND	517
12.4	MANKIND'S EFFECTS Heat Production Particulate Production Production of Gases		430		Solar Flux Naturally Occurring Radioisotopes Man-Made Radiation		
							521
				14.4			
	Stratospne	eric Ozone		12.1	Somatic Effects		
CHAF	TER 13	3 LOCAL CLIMATIC	474		Genetic Effects		
CHAI	TER 15	EFFECTS	2, 2			rels of Radiation	
13.1	MICROC	LIMATE CHANGES	474	14.5	RADIAT	TION STANDARDS	530
	The Climate of Cities Metropolitan Influences on Rural				Current Standards Benefit versus Risk		
						Crous Risk	
	Climate				SSARY NDIX A	UNITS OF MEASURE	543 554
13.2	PRIMARY AIR POLLUTANTS Carbon Monoxide Hydrocarbons Total Suspended Particulates		482		PPENDIX B THERMODYNAMIC PROPERTIES OF STEAM AND AMMONI		557
				IND			IA 567