CONTENTS

PREFACE	V
ABBREVIATIONS	xv
I. STARTING POINT AND PRELIMINARIES	1
1. Scope of the book	1
2. Description of the Neutron Distribution	4
3. Neutron Cross-Sections (XS)	8
3.1 Reaction Rates	12
3.2 Differential Cross-Sections	14
3.3 Nuclear Data Files	20
3.4 Multigroup Nuclear Data Libraries	23
4. The Neutron Transport Equation	29
4.1 Integral Forms of the Transport Equation	30
4.2 Eigenvalues and Criticality	34
5. The Treatment of Energy, Angle and Space	36
5.1 Energy	37
5.2 Angle	38
5.3 Space	40
6. The Calculational Flow Chart	41
Questions	47
References	47
II. SOME PRINCIPLES OF PROGRAMMING	49
1. Introduction	49
2. Input and Output	50
2.1 Input	50
2.2 Output	54
3. Subroutines (SR)	58
4. Program Structure	65
5. Variable Dimensioning	69
6. Data Transfer between Links	74

CONTENTS

7. Direct or Random Access 8. Sundries	76 76
Questions	79
III. DESCRIPTION OF A TYPICAL NUCLEAR DATA LIBRARY	80
 Introduction General Data Resonance Data Cross-Section Data P1-Scattering Data Burnup Data Concluding Remarks The Identifiers Temperature Dependence of Nuclear Data Burnable Absorber Tables Group Structures 	80 82 88 94 97 97 98 99 100
7.5 Some Typical Sizes	104
References	104
IV. INTEGRAL TRANSPORT THEORY; COLLISION PROBABILITIES	105
 Reduction to One-Group Equations The Group Source The Transport Correction The One-Group Integral Transport Equation The Kernel of the Integral Transport Equation: Examples The Bickley Functions Ki (x) Transport Kernel and First-Flight Collision Probabilities Blackness and Escape Probability Collision Probabilities in Cylindrical Geometry 9.1 Annular Geometry Application of Collision Probabilities 10.1 A partially Reflected Cell with an External	105 107 107 109 113 115 126 129 140 140
V. THE P _L APPROXIMATION AND DIFFUSION THEORY 1. The General P _L Equations 2. The General P ₁ Equations 3. The Diffusion Equation 4. The Transport Correction 5. Multigroup Equations 6. Boundary Conditions (BC) 6.1 Free Surface Boundary Conditions (Marshak, Mark 6.2 Periodic Boundary Conditions	142 142 146 149 151 155 155 158

CONTENTS

	6.3 Reflective Boundary Conditions	159
	6.4 Albedo Boundary Conditions	160
	6.5 Interface Conditions	163
7.	One-Dimensional Finite Difference (FD) Equations	164
	7.1 Three-Point FD Equation for the Flux in P1	
	Theory	164
	7.2 Three-Point FD Equation for the Flux in	
	Diffusion Theory	166
	7.3 Discussion of the FD Approximations	168
8.	Multi-Dimensional FD Equations	170
erer S u	8.1 Boundary Conditions	172
	8.2 A Warning on the Choice of Mesh Points	173
9.	Iteration Methods to Solve the FD Equations	176
	9.1 Gauss, Jacobi, Richardson, or Total-Step	110
	Iteration	182
	9.2 Gauss-Seidel, Liebmann, or Single-Step Iteration	- C
	9.3 The Successive Overrelaxation (SOR) Method	184
	9.4 Normalization or Scaling	185
	9.5 Convergence and the Stopping Criterion	188
	3.3 convergence and the probbing currection	100
Que	stions	189
Ref	erences	190
VI.	THE DISCRETE ORDINATES OR DISCRETE S, METHOD	191
		101
	The Multigroup Discrete Ordinates Equations	191
۷.	Discretization of Space and Angle	195
	2.1 Rectangular Geometry	195
2	2.2 Spherical Symmetric Geometry	197
3•	Discrete Angles and Weights	202
	3.1 General Conditions	202
	3.2 Complete Symmetry	203
		207
i.		209
		211
5.		213
		215
-		217
		219
		223
8.	The Ray Effect	226
Ques	stions	228
		230
		230
VII.	A NODAL METHOD FOR PIN-CELL COUPLING; PIN-CELL	
	TTOMO OFFITT A FITTOM	221
	TIOTIOGDITZATION	231
		231
2.	The Nodal Model	234
		237
4.	Iterative Solution of the Nodal Equation	238
		239

Xii

6. 7.	Nodal Coefficients for Heterogeneous Nodes 5.1 Heterogeneous Boundaries: M _B , J _B and a _B Source Term and Flux The Algorithm Pin-Cell Homogenization 8.1 Cross-Section Homogenization 8.2 A Homogenization Paradox 8.3 The Homogenization Source	241 242 245 246 247 250 252
5451	stions erences	255 256
VIII.	MULTIGROUP ITERATION METHODS	257
1	Introduction 1.1 Physical Considerations 1.2 Eigenvalue and Eigenvector of the Multigroup	257 258
~	Scheme	262 264
	The Initial Guess The Fission Source	267
350 C.F	The Eigenvalue or Outer Iterations	268
5.	The Up-Scattering or Thermal Iterations	270
STA	5.1 Fundamental Mode Rebalancing	271
6.	The Convergence Criterion	274
7.	Programming Remarks	275
	7.1 Structuring the Working File	276
	7.2 Evaluation of the Scattering Source	278 280
	7.3 Multigroup Fixed-Source Iterations	97.34 780
Que	stions	284
Ref	'erences	284
IX.	GROUP CONSTANTS IN THE RESONANCE REGION	286
1.	General Remarks	286
2.	1 First-Flight Probabilities for the Average Pin Cell	288
3.	First-Flight Fuel Collision Probability for an	
	Assembly	292
	3.1 Cells without Fuel	294
	3.2 The Dancoff Factor	296 297
4.	Rational Approximations	302
5.	The Resonance Flux in a Homogeneous Medium	305
X	5.1 The Intermediate Resonance Approximation 5.2 RI Tables and IR Parameters of the XS Library	307
c	The Resonance Flux in the Fuel of an Assembly	308
6	Ine Resonance Flux in the Fuel of an industry, 1 The Flat Flux Approximation	310
0,	6.2 The IR Approximation in Heterogeneous Media	312
	6.3 An Equivalence Relation	313
	6.4 An Equivalent One-Term Rational Approximation	316
7.	. Effective Resonance Cross-Sections	317
	7.1 Interaction between Resonance Absorbers	321
8	Removal Cross-Sections	323

59		
	CONTENTS	xiii

9. Different Pin Types 10. Summary	328 334
Questions	335
References	335
X. THE CRITICALITY SPECTRUM; BURNUP	337
1. Introduction	337
2. Fluxes for Homogenization and Condensation	338
2.1 Microflux Evaluation	338
2.2 Infinite-Medium Flux and Criticality Flux	342
2.3 Condensation Spectra for Library Cross-Section	122.30
2.4 Homogenization and the Spatial Microflux	344
2.5 Condensation and the Microflux Spectrum 2.6 Evaluation of the Macroflux	345 348
2.7 Homogenization and Condensation with the	240
Macroflux	349
3. A Two-Group Analysis of Condensation Spectra	351
3.1 The Infinite-Medium Spectrum	352
3.2 The Leakage Spectrum in Two-Group Diffusion	
Theory	353
3.3 Criticality of a Bare Homogeneous System	356
3.4 Other Spectra; Discussion	357
4. The B1 Method for the Asymptotic Spectrum	360
4.1 The P1 and B1 Equations	363
4.2 Solution of the B1 Equations	366
4.3 The B1 Diffusion Coefficient	372
5. Flux Expansion and Scaling to Power	373
6. Burnup Chains	377
6.1 The Exact Solution of a Burnup Chain	380
6.2 The Stratagem of England	384
7. Assembly and Reactor Burnup	387
7.1 The Predictor-Corrector Method	388
7.2 Reactor Burnup	389
7.3 Doppler and Xenon Effects	390
Questions	391
References	392
XI. NODAL EQUATIONS FOR 3D REACTOR CALCULATIONS	393
1. General Remarks	393
1.1 Geometric Ordering	398
2. The Response Matrix (RM) Method	400
2.1 The High-Order Response Matrix Method	404
3. Nodal Equations from the Response Matrix	405
3.1 The Synthetic Response Matrix	407
3.2 The Nodal Equation of the Synthetic Response	5770
Matrix	409
3.3 Solution of the Response Matrix Nodal Equatio	ns 413
3.4 The Nodal Equation of TRILUX	415

XiV CONTENTS

3.5 Iterative Solution of the One-Group Nodal	
Equation	418
3.6 The Chebyshev Polynomial Method	422
3.7 The Nodal Equation of FLARE	424
3.8 Synthetizing the Response Matrix	427
4. The Nodal Equation of the Coarse-Mesh Method	429
4.1 The Response Matrix of the Coarse-Mesh Method	429
4.2 Synthetizing the Coarse-Mesh Response Matrix	430
4.3 The Coarse-Mesh Equation	432
4.4 Solution of the Coarse-Mesh Equations	434
5. 1.5-Group Nodal Models	436
5.1 The Buckling Model for the Epithermal Flux	437
5.5 The PRESTO Model for the Epithermal Flux	442 444
5.3 The Buckling Model in the Thermal Group 5.4 The PRESTO Model in the Thermal Group	446
5.5 Thermal Coupling with the Reflector	448
6. The Equivalence of the two Response Matrices	449
	1. 5 /
Questions	451
References	451
ANSWERS	453
References	485
	200
APPENDIX: USEFUL CHEBYSHEV EXPANSIONS FOR COLLISION	
PROBABILITIES	486
1. Introduction	486
2. Chebyshev expansions	489
3. A note on the subroutines	494
	496
References	770
SUBJECT INDEX	497
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-