CONTENTS

Preface		
	1 Preliminaries	
I.I	Definition of the subject	r
1.2	Introduction to the theoretical approach	3
1.3	Orders of magnitude	7
1.4		
1.5	Orbits of particles	12
	2 The Velocity-Distribution Method	
2.1	Need for a statistical treatment	16
2.2	Conditions peculiar to cosmic electrodynamics	17
2.3	Equations of motion for one constituent	18
2.4	Treatment of the electromagnetic field	. 21
2.5	Collisions	22
2.6	Equations of motion for totally ionized hydrogen	23
2.7	Ohm's law	24
2.8	Viscosity	27
2.9	Non-thermal conditions	28
	3 The Motion of Magnetic Fields	
3.I	Representations of a magnetic field	30
3.2	The motion of the field with the material	32
3.3	Motion of the field in the general case	34
3.4	Causes of relative motion between the field and the materia	ıl 36
3.5	The generation of a magnetic field by mechanisms involving non-uniform rotation	g 38
3.6	The dynamo problem	39
3.7	Instability of unlinked lines of force	42

4 Magnetostatics

4.I	The magnetic force density	page 43
4.2	The magnetostatic problem and boundary conditions	
4.3	Two-dimensional models	
4.4	Axially symmetric models	54
4.5	Instability of models with helical lines of force	56
4.6	Twisted toroidal fields	60
	5 Magnetodynamics	
5.1	General remarks	63
5.2	Models with steady flow	63
5.3	Rotating fields	64
5-4	Alfvén waves	71
5.41	Effect of the Hall field on Alfvén waves	73
5.42	Attenuation of Alfvén waves	74
5-43	Waves in a compressible gas in a uniform magnetic field	75
5.5	Small oscillations	76
5.6	Criteria of stability	78
5.7	Magnetic variable stars	83
5.8	Turbulence	86
5.9	Shock waves	90
	6 Acceleration of Charged Particles to High Energ	y
6.1	Requirements of an accelerating mechanism	93
6.2	The betatron mechanism	94
6.3	Discharges in a magnetic field	96
6.4	Discharges at neutral points	98
6.5	Acceleration resulting from turbulence	102
	7 Solar Phenomena	
7.1	Introduction	109
7.2	Photospheric granulation and convection	110
7.3	Sunspots	112

	CONTENTS	vii
7-4	Statistics of sunspots	page 116
7.5	The corona, general magnetic field and rotation	117
7.6	Observations in monochromatic light	121
7.7	Prominences	123
7.8	Flares	125
7.9	M regions	128
7.10	The problem of the origin of sunspots and of the solar cyc	ele 130
	8 Magnetic Storms and Aurorae	
8.1	Magnetic storms	132
8.2	Aurorae	135
8.3	The Chapman-Ferraro model	137
8.4	Interpretation of magnetic storms and aurorae	146
8.5	The outer atmosphere	149
8.6	Waves in the C-F surface	151
	9 Ionospheric Electrodynamics	
9.1	Conduction in the ionosphere	153
9.2	Induction by tidal motion	156
9.3	The motion of irregularities in the electron density	160
9.4	Convective diffusion	164
9.5	The influence of the geomagnetic field on turbulence	167
9.6	Alfvén waves in the ionosphere	169
	PENDIX. The effective frequency of collisions between narged particles	n 173
Вів	LIOGRAPHY	175
Ind	DEX	183