

Contents

Preface

Chapter I.	Variations of cosmic rays as a means for investigating	
-	the cosmos	1
81 The i	nformation content of cosmic ray data	1
•	troduction	1
	imary cosmic rays, their energy spectrum and nuclear composition	3
	ime variations and the origin of cosmic rays	5
	he passage of cosmic rays through the Earth's atmosphere; coupling	
	pefficient and meteorological effects	8
1.5 T	he influence of the magnetic field on cosmic rays	10
1.6 T	he sensitivity of cosmic rays to conditions in the cosmos	11
§2 Brief	history of the study of cosmic-ray variations	12
2.1 T	he four periods in the history of the study of the variations	12
2.2 F	irst period: discovery of the time-variations of cosmic-ray intensities	
(1	926–1934)	13
2.3 Se	econd period: the variation of the hard (μ -meson) component	
	935-1950)	14
	hird period: development of methods for investigating cosmic-ray var-	
	tons (1951–1956)	18
2.5 F	ourth period: from the International Geophysical Year till now.	
	easurements of cosmic-ray variations directly in space by means of	
	tellites and space probes	23
	ification of cosmic-ray variations and present-day explanations	24
	he main classification scheme	24
§4 Possi	ble interference of effects arising from different classes of variations	31
Chapter II.	Experimental methods for investigating cosmic-ray variations	35
-	world-wide net of cosmic ray stations	35
•	he principal requirements for continuous recording	35
	thief features of the experimental methods	35
	Distribution over the Earth and geomagnetic cutoff rigidities	38
	decording accuracy	38
	veraging observational data from different stations	39
5.6 S	tatistical analysis of the observed variations	40
	nter telescopes used during the IGY and the IQSY	43
	Geometries and directional diagrams	43
6.2 D	Directional properties of cosmic-ray meson detectors	48

x Contents

	6.3 Lifetime of the counters	49
	6.4 Self-regulating high voltage supplies	51
	6.5 Automatic recording of bursts	51
	6.6 Improvements in the electronics	52
	6.7 Automatic performance checks	52
87	Scintillators for continuous recording of cosmic-ray intensity	53
•	7.1 Plastic scintillators as detectors of charged particles	53
	7.2 Some telescopes operating with plastic scintillators	55
	7.3 Directional diagrams of scintillation telescopes	57
88	A telescope with giant Cerenkov counters for continuous recording of	37
30	the flux of high-energy particles	59
80	Neutron monitors	61
87	9.1 Improvements made in the neutron monitor of Simpson's type	61
	9.2 Automatic pressure recording	62
	9.3 Recording the neutron component with supermonitors	63
	9.4 Recording of the neutron component by scintillation or by means	05
	of counters filled with ³ He	64
		65
	9.5 Sensitivity of the neutron monitor to various secondary components	68
	9.6 Directional diagram of the neutron monitor	68
	9.7 Recording of "multiple" neutrons	00
§ 10	Equipment for studying variations in the frequency of extensive air	72
	showers	72
§ 1 1	Measurement of cosmic-ray variations from aircraft and balloons	74
	11.1 Instruments for aircraft	74
	11.2 Instruments for balloons	74
§12	Measurement of cosmic-ray variations from rockets and satellites	77
	12.1 Cosmic-ray instruments on sounding rockets	77
	12.2 Total flux measurements of electrons, protons, α -particles and γ -rays	77
	12.3 Investigation of the time variations of the flux of nuclei by means of	
	rockets and satellites	78
	12.4 A satellite instrument for the very high energy range	80
§13	Cosmic-ray variations inferred from meteorites	81
	13.1 The isotope method	81
	13.2 The method of fossil tracks	86
	13.3 Induced radioactivity in interplanetary dust	87
§ 14	Investigation of cosmic-ray variations from isotopes formed on the Earth	88
-	14.1 Formation of unstable isotopes	88
	14.2 Formation of stable isotopes	89
815	Investigation of cosmic-ray variations by their influence on the ionosphere,	
3 -0	and by means of radioastronomy	90
	15.1 An illustrative example: the anomalous ionization in the lower iono-	
	sphere on 23 February 1956	90
	15.2 Further computations on ionization in the lower ionosphere by solar	
	cosmic rays	99
	15.3 Riometer measurements of polar absorptions as a method for investi-	,,
	gating solar cosmic rays	101
		103
	15.4 The influence of galactic cosmic rays on the lower ionosphere	103
	15.5 The possibility of detecting fluxes of solar electrons by the radiation	105
	they emit in the geomagnetic field	105

Contents xi

Chapter III. Meteorological cosmic-ray effects (variations of Class I)	106
§ 16 Basic theory of meteorological cosmic-ray effects	107
16.1 Meteorological effects in the μ -meson intensity	107
16.2 Meteorological effects in the soft and total ionizing component	121
16.3 Meteorological effects in the neutron component	129
§ 17 The barometric effect of cosmic rays	132
17.1 Large corrections; logarithmic representation	132
17.2 Empirical determination of the barometric coefficient	135
17.3 Influence of the wind	137
17.4 The barometric coefficients for various secondary components	138
17.5 Variation of the barometric coefficient of the neutron component	
with cutoff rigidity and altitude of observation	146
17.6 Influence of different types of extra-atmospheric cosmic-ray variations	
on the barometric coefficients	157
17.7 The barometric coefficients for "multiple" neutrons	163
§ 18 The temperature effect of cosmic rays	167
18.1 Integral method for determining the temperature effect	167
18.2 Comparison of the empirical and the integral methods for the deter-	
mination of the temperature effect	172
18.3 Experimental and theoretical temperature coefficients for the meson	
component	175
18.4 The temperature effect of the meson component from underground	
observations	183
18.5 Temperature and humidity effects in the neutron component	183
§ 19 The role of the meteorological effects in the observed cosmic ray variations	188
19.1 General remarks	188
19.2 Influence of the temperature effect on the solar-day variation of the	
meson component	189
19.3 Temperature effect and the anomalous diurnal cosmic-ray variation at	
minimum solar activity	199
19.4 The contribution of the meteorological effects to the annual cosmic-	
ray variation	210
19.5 Meteorological effects and the planetary distribution of cosmic rays	213
19.6 Determination of the temperature variations in the high atmosphere	
from time variations of the μ -meson intensity underground	221
§20 Further theoretical refinements	224
20.1 Determination of the temperature effect from the altitudes of the	224
isobaric levels	224
20.2 Second approximation of the integral method [26]	227
20.3 More accurate determination of the temperature coefficients	231
20.4 Theory of cosmic-ray variations of atmospheric origin, account being	224
taken of interference effects	234
20.5 The method of the partial barometric coefficient	237
20.6 Estimates of the partial barometric coefficient for the neutron com-	242
ponent	242
20.7 Fully theoretical computation of the meteorological coefficients from	244
the properties of the meson-nucleon cascade in the atmosphere	244

xii Contents

§21 The inverse action of cosmic rays on the terrestrial atmosphere	244
21.1 Action of cosmic rays on conditions in the lower atmosphere	244
21.2 Albedo radiation of cosmic rays in the Earth's atmosphere	245
Chapter IV. The method of coupling coefficients	252
§ 22 Basic concepts of the method of coupling coefficients	253
22.1 Coupling coefficients for various types of cosmic ray recordings	253
22.2 Determination of coupling coefficients from geomagnetic effects	259
22.3 Coupling coefficients for underground measurements	263
22.4 Coupling coefficients for extensive air showers	267
§23 Improved coupling coefficients for low and medium energies	273
23.1 Use of observed cosmic ray variations for improving the coupling	
coefficients	273
23.2 Determination of coupling coefficients from geomagnetic effects	276
23.3 Coupling coefficients for neutron monitor	281
23.4 Geomagnetic effects and coupling coefficients for directional meas-	•00
urements of the meson and ionizing components	288
23.5 Coupling coefficients and integral generation multiplicities for meas-	204
urements in the stratosphere	294
§24 Use of coupling coefficients in studying primary variations	298
24.1 Variation of coupling coefficients with solar activity	298
24.2 Some practical questions in determining primary variations	299
24.3 Determination of primary variations from world-wide data	303
24.4 Absorption in the atmosphere as a spectrometer for the primary	200
variations	306
§25 Integral multiplicity and coupling coefficients in the high-energy range 25.1 Errors connected with extrapolating coupling coefficients to the high-	309
energy range	309
25.2 Relation between the primary spectrum and the muon spectrum	310
25.3 Approximate computations of integral multiplicity neglecting differ-	
ences in the level of generation and among the energies received by	
each muon	312
25.4 Computation of the integral multiplicity of muon generation with due	
account of the spectrum of pion generation, the spectrum of their de-	
cay into muons, and the spread in generation levels	326
25.5 Coupling coefficients for the muon component in the high energy re-	
gion [87]	336
25.6 Coupling coefficients for directional measurement of the muon com-	
ponent (still in the one-dimensional approximation)	342
25.7 Coupling coefficients in an elementary three-dimensional model	344
25.8 The integral multiplicities of secondary components derived from extensive air showers	352
Chapter V. Geomagnetic separation of cosmic rays	357
•	358
§ 26 The cosmic ray equator	358
26.1 The latitude of minimum intensity and of maximum cutoff rigidity 26.2 The cosmic ray equator inferred from time variations	360
20.2 The cosmic ray equator interred from time variations	300

Contents	xiii

26.3 Possible interpretations and more accurate determinations	361
§ 27 Observed geomagnetic effects	365
27.1 Measurements at sea level	365
27.2 Measurements on aircraft	366
27.3 Measurements in the stratosphere and on satellites	372
27.4 The azimuthal asymmetry and the influence of the geomagnetic field	
on secondary particles	372
§ 28 The distribution of cutoff rigidities over the Earth	373
28.1 Approximate theoretical computations	373
28.2 Some experimental checks	374
28.3 Approximate computation of the influence of the penumbra	377
28.4 Estimates of the cutoff rigidity from the L -parameter of McIlwain	378
28.5 Accurate cutoff rigidities computed by means of numerical trajec-	
tories	382
28.6 Dependence of effective cutoff rigidity on the primary spectrum	386
§ 29 Trajectories, impact zones and the acceptance cone of cosmic rays in the	
geomagnetic field	397
29.1 Trajectories, impact zones and asymptotic cones in the dipole approx-	
imation	398
29.2 Variation of the position of impact zones during the year	403
29.3 Asymptotic directions, impact zones and acceptance cone of particles	
in a field including the higher harmonics	403
Chapter VI. Cosmic-ray variations of geomagnetic origin	412
§ 30 Variations due to changes of the internal field of the Earth	413
30.1 Cosmic-ray variations expected for large changes of the geomagnetic	•15
field	413
30.2 Variations of geomagnetic origin during the last 2000 years	415
30.3 Secular variations of the cutoff rigidity	415
§ 31 Effects of axially symmetric currents in the magnetosphere	418
31.1 Provisional assessment of the causes of variations in cutoff rigidity	
during magnetic storms	418
31.2 The cutoff rigidity under various zenith angles in the presence of a	0
thin equatorial ring current	424
31.3 Influence of a current sheet on the geomagnetic cutoff rigidity	429
31.4 The effect of volume currents in the radiation belts on the cutoff	,
rigidity	437
31.5 The influence of a ring current on the position of impact zones and	. = .
asymptotic directions	437
§ 32 The effect of changes in the magnetosphere on cosmic rays	441
32.1 Effect of compression of the magnetosphere on cutoff rigidity	441
32.2 Effect of compression of the magnetosphere and western current sys-	
tems on asymptotic directions and the acceptance cone	443
32.3 Asymmetric variations of the magnetosphere and diurnal cosmic-ray	
	446
variations of geomagnetic origin	451
32.4 Oscillation of the asymptotic acceptance cones	101

xiv Contents

§ 33 Observed cosmic-ray variations due to changes in the geomagnetic field	452
33.1 Unusual increases during magnetic storms	452
33.2 Application of the method of coupling coefficients	456
33.3 The latitude-longitude distribution of the effect of September 13, 1957	
33.4 The latitude-longitude distribution of the effect of February 11, 1958	464
33.5 Main properties of the cosmic-ray intensity increase during the main	
phase of a magnetic storm	465
33.6 Some statistical properties of the increase effect	466
33.7 Variation of the geomagnetic field and local anisotropy of the cosmic	400
rays	469
33.8 The influence of small magnetic perturbations on cosmic rays	477
33.9 Detection of the effect of compression of the magnetosphere in cos-	4//
•	478
mic rays	4/0
33.10 Direct observations of the cutoff variations by means of measure-	470
ments on balloons and satellites and from polar cap absorptions	478
§ 34 Lunar-day effect and tidal variations	479
34.1 The lunar-day variation and its separation from the modulation of the	450
solar-day wave by the 27-day effect	479
34.2 The reality of the lunar-day variation of cosmic rays	482
34.3 The dependence of the lunar-day variation of the relative positions of	
Sun, Moon and Earth	483
34.4 Dependence of the lunar-day variation on latitude	484
34.5 Main conclusions; discussion of tidal effects	487
§ 35 The influence of the tail of the Earth's magnetosphere	489
35.1 Main properties of the tail of the magnetosphere	489
35.2 Probable mechanism by which the Earth's magnetic tail influences	
cosmic rays	490
35.3 Approximate position of the curves of constant threshold at high lati-	
tudes	490
35.4 The influence of the Earth's magnetic tail on the trajectories of pro-	
tons with energy 1.2 MeV	492
35.5 Channeling of low-energy cosmic rays in the tail of the magnetosphere	494
Chapter VII. Problem to determine extra-terrestrial variations	497
-	771
§ 36 The role of geometric factors in extra-terrestrial cosmic-ray variations ob-	
served on the Earth	497
36.1 General remarks	497
36.2 Asymptotic directions with respect to the ecliptic plane	499
36.3 Origin of a spurious sidereal-day variation	502
36.4 Distortion of the true anisotropy	504
36.5 Effect of the elliptical shape of the Earth's orbit	505
36.6 Study of the transverse cosmic-ray intensity gradient in interplanetary	
space from seasonal variations	506
36.7 The effect of diurnal and semi-diurnal variations symmetric with re-	
spect to the Sun's equator	507
§ 37 Investigation of cosmic-ray anisotropy by means of variational coefficients	511
37.1 Determination of partial variational coefficients	511

Contents	xv
Contients	A.

37	.2 Determination of the longitude variational coefficients if the anisotro-	
	py follows a cosine law in latitude	513
37	.3 Ways of using the longitude variational coefficients in studying the	
	solar-day variation	514
	.4 Limitations of the method of variational coefficients	518
	ne method of acceptance vectors to study cosmic-ray anisotropy	519
38	.1 Representation of intensity distribution by spherical harmonics	519
38	2.2 The space distribution of cosmic rays and the diurnal variation	520
38	3.3 Determination of acceptance vectors of actual instruments	522
38	.4 Acceptance vectors for neutron monitors	525
38	5.5 Acceptance vectors of meson detectors	537
38	3.6 Transformation matrices	537
38	.7 Method for determining the momentary anisotropy	545
§ 39 S ₁	purious periodicities arising from modulation and methods for their elimi-	
-	tion	547
39	.1 The problem of distinguishing the true periodic variations if there is	
	amplitude-phase modulation	547
39	2.2 First approximation	548
	.3 Satellite frequencies of higher orders	552
	.4 Higher-order satellites in the presence of real waves	555
	.5 Inverse problem: determination of the modulation parameters: and	
	the true waves from data about the satellite waves	557
39	0.6 Amplitude-phase modulation of periodic cosmic-ray variations simul-	
	taneously in two frequencies	561
D	**	563
Prospec	ıs	303
Append	ices	.567
		F.C.7
I	The world-wide net of cosmic-ray stations	567
II		577
Il		586
I		591
V	Asymptotic directions of incidence	596
Dafa		601
References		601
Subject index		657