		·	

CONTENTS

	1.1	Applications of Radio Interferometry	1
	1.2	Some Basic Terms and Definitions	3
		Cosmic Signals, 3	
		Source Positions and Nomenclature, 8	
		Reception of Cosmic Signals, 9	
	1.3	Development of Radio Interferometry	11
		Michelson Interferometer, 11	
		Principles of Radio Interferometry and Early Instruments, 14	
		Phase Switching and the Correlator Interferometer, 19	
		Survey Instruments and High-Resolution Measurements, 21	
		Detailed Mapping and Special Uses of Interferometers, 23	
		Earth Rotation in Synthesis Mapping, 26	
		Development of Synthesis Arrays, 28	
		Very-Long-Baseline Interferometry, 29	
2.		RODUCTORY THEORY OF INTERFEROMETERS CORRELATOR ARRAYS	40
	2.1	Simple Radio Interferometer	40
	2.2	Broadband Interferometer	44
			xiii

1

1. INTRODUCTION AND HISTORICAL REVIEW

•	~
XIV	Contents
AIV	Contents

	2.3	Cosmic Source Synthesis	48
		Convolution and Extended Sources, 48	
		Source Synthesis, 51	
		Two-Dimensional Mapping, 52	
	2.4	Generalized, Two-Dimensional Relationship Between	
		Visibility and Brightness	54
3.	FUR	THER THEORY OF THE INTERFEROMETER RESPONSE	57
	3.1	Properties of the Incident Radiation	57
		Incident Field, 57	
		Source Coherence Function, 60	
	3.2	Properties of the Receiving System	63
		Components of the Receiving System, 63	
		Response of the Receiving System to the	
		Incident Radiation, 64	
	3.3	Response to a Completely Incoherent Source	67
	3.4	Response to a Completely Coherent Source	70
	3.5	Space-Frequency Equivalence	71
	Appe	endix 3.1 Van Cittert–Zernike Theorem	73
	Appe	endix 3.2 Correlation, Convolution, and the	
		Wiener-Khinchin Relation	76
4.	GEO	METRICAL RELATIONSHIPS AND OTHER	
	PRA	CTICAL CONSIDERATIONS	78
	4.1	Coordinate Systems for the Fourier	
		Transform Relationship	78
	4.2	Antenna Spacing Coordinates and (u, v) Loci	86
	4.3	(u', v') Plane	90
	4.4	Fringe Frequencies	91
	4.5	Visibility Frequencies	92
	4.6	Calibration of the Baseline	93
	4.7	Antenna Mounts	94
	4.8	Beamwidth and Beamshape Effects	96
	4.9	Polarimetry	97
		Parameters Defining Polarization, 97	
		Interferometer Response in Terms of Stokes Parameters, 99	
		Instrumental Polarization, 105	
	4.10	Discrete Fourier Transformation	106
	4.11	Sampling Theorem	110

			Contents	xv	
	Appe	ndix 4.1 Conversion between Hour Angle-Declination and Azimuth-Elevation Coordinates	n	112	
5.	DESI	GN OF ARRAYS		114	
	5.1	Spectral Sensitivity Function of a			
		Nontracking Array		115	
	5.2	Nontracking Interferometers and Arrays		118	
	5.3	Phased Arrays and Correlator Arrays		121	
	5.4	Spectral Sensitivity and Transfer			
		Functions of a Tracking Array		123	
	5.5	One-Dimensional Tracking Arrays		125	
	5.6	Two-Dimensional Tracking Arrays		131	
	5.7	VLBI Arrays		135	
		VLBI Antennas in Space		138	
	5.9	Theoretical Relationships and Aperture Synthesis		139	
6.	RESI	PONSE OF THE RECEIVING SYSTEM		143	
	6.1	Frequency Conversion, Fringe Rotation,		1.40	
		and Complex Correlators		143	
		Frequency Conversion, 143			
		Response of a Single-Sideband System, 145			
		Upper-Sideband Reception, 146			
		Lower-Sideband Reception, 148			
		Multiple Frequency Conversion, 149			
		Delay Tracking and Fringe Rotation, 149			
		Simple and Complex Correlators, 150			
		Response of a Double-Sideband System, 150			
		Relative Advantages of Double- and Single-Sideband Systems, 153			
		Sideband Separation, 154			
	6.2	Response to the Noise		155	
		Signal and Noise Processing in the Correlator, 155			
		Noise in the Measurement of Complex Visibility, 160			
		Signal-to-Noise Ratio in a Synthesized Map, 162			
		Noise in Visibility Amplitude and Phase, 165			
		Discussion, 167			

xvi	Con	tents	
	6.3	Effect of Bandwidth	169
		Mapping in the Continuum Mode, 169	
		Wide Field Mapping with a Multichannel System, 174	
	6.4	Effect of Visibility Averaging	174
7.	DES	IGN OF THE ANALOG RECEIVING SYSTEM	180
	7.1	Principal Subsystems of the Receiving Electronics	180
		Low-Noise Input Stages, 181	
		Local Oscillator, 182	
		IF and Signal Transmission Subsystems, 182	
		Delay and Correlator Subsystems, 183	
		VLBI Systems, 184	
	7.2	Local Oscillator and General Considerations of Phase Stability	184
		Round-Trip Phase Measuring Schemes, 184	
		Swarup and Yang System, 185	
		Frequency-Offset, Round-Trip System, 186	
		Automatically Correcting System, 191	
		Phase-Locked Loops and Reference Frequencies, 192	
		Phase Stability of Filters, 194	
	7.3	Frequency Responses of the Signal Channels Optimum Response, 195	195
		Tolerances on Variation of the Frequency Response: Degradation of Sensitivity, 196	٠
		Tolerances on Variation of the Frequency Response: Gain Errors, 198	
		Delay-Setting Tolerances, 200	
		Implementation of Bandpass Tolerances, 201	
	7.4	Polarization-Mismatch Tolerances	201
	7.5	Phase Switching	202
		Reduction of Responses to Spurious Signals, 202	
		Implementation of Phase Switching Using Walsh Functions, 203	
		Interaction of Phase Switching with Fringe Rotation and Delay Adjustment, 205	
	7.6	Automatic Level Control and Gain Calibration	206
	Appe	endix 7.1 Single-Sideband Mixer	207

			Contents	xvii
8.	DIGI	TAL SIGNAL PROCESSING		210
	8.1	Bivariate Gaussian Probability Distribution		211
	8.2	Periodic Sampling		212
		Nyquist Rate, 212		
		Correlation of Sampled but Unquantized Waveforms,	213	
	8.3	Sampling with Quantization		216
		Two-Level Quantization, 217		
		Four-Level Quantization, 221		
		Three-Level Quantization, 227		
	8.4	Comparison of Quantization Schemes		228
	8.5	Accuracy in Digital Sampling		230
		Principal Causes of Errors, 230		
		Tolerances in Three-Level Sampling, 231		
	8.6	Digital Delay Circuits		234
	8.7	Quadrature Phase Shift of a Digital Signal		235
	8.8	Digital Correlators for Continuum Observations		236
	8.9	Digital Correlators for Spectral-Line Observations		236
		Principles of Digital Spectral Measurements, 236		
		Spectral Correlator Systems, 241		
		endix 8.1 Evaluation of $\sum_{q=1}^{\infty} R_{\infty}^{2}(q\tau_{s})$		244
	Appe	endix 8.2 Evaluation of the Probability Integral		245
		for Two-Level Quantization		245
9.	VER	Y-LONG-BASELINE INTERFEROMETRY		247
	9.1	Early Development		247
	9.2	Differences Between VLBI and		
		Conventional Interferometry		250
	9.3	Basic Performance of a VLBI System		251
		Time and Frequency Errors, 251		
		Retarded Baselines, 258		
		Noise in VLBI Observations, 259		
		Probability of Error in the Signal Search, 262		
		Coherent and Incoherent Averaging, 266		
	9.4	Phase Stability and Atomic Frequency Standards		269
		Analysis of Phase Fluctuations, 269		
		Oscillator Coherence Time, 277		
		Procise Frequency Standards 280		

xviii Contents

		Rubidium Gas-Cell Resonator, 283	
		Cesium-Beam Resonator, 285	
		Hydrogen-Maser Frequency Standard, 285	
		Local Oscillator Stability, 290	
		Phase Calibration System, 290	
	9.5	Time Synchronization	291
	9.6	Recording Systems	292
	9.7	Processing Systems and Algorithms	295
		Fringe Rotation Loss (η_R) , 296	
		Fringe Sideband Rejection Loss (η_S), 299	
		Discrete Delay Step Loss (η_D) , 301	
		Summary of Processing Losses, 304	
	9.8	Bandwidth Synthesis	305
	9.9	Phased Arrays as VLBI Elements	308
10.		IBRATION AND FOURIER TRANSFORMATION VISIBILITY DATA	314
	10.1	Calibration of the Visibility	314
		Corrections for Predictable or Directly Measurable Effects, 315	
		Use of Calibration Sources, 316	
		Calibration of Spectral Line Data, 317	
		Calibration of Polarization Data, 318	
	10.2	Derivation of Brightness from Visibility	320
		Model Fitting, 320	
		Mapping by Direct Fourier Transformation, 321	
		Implementation of the Direct Fourier Transform, 325	
		Mapping by Discrete Fourier Transformation, 327	
		Convolving Functions and Aliasing, 328	
		Aliasing and the Signal-to-Noise Ratio, 332	
		Interpretation of the Brightness Variable in the Map, 334	
	10.3	Practical Considerations	335
		Possible Causes of Errors in Maps, 335	
		Visibility at Low Spatial Frequencies, 337	
		Miscellaneous Hints on Planning and Reduction	
		of Observations, 338	

		Contents	xix
11.	IMA	GE PROCESSING AND ENHANCEMENT	342
	11.1	Limitation of (u, v) Coverage and	
		Methods of Compensation	342
		CLEAN Algorithm, 343	
		Implementation and Performance of the CLEAN Algorithm, 347	
		Constrained Optimization Techniques, 349	
	11.2	Mapping with Incomplete Phase Data	352
		Mapping with the Visibility Modulus Only, 352	
		Mapping with Uncalibrated Phase Data, 356	
	11.3	Miscellaneous Application Notes	365
12.	INTE	ERFEROMETER TECHNIQUES FOR ASTROMETRY	
		GEODESY	369
	12.1	Requirements for Astrometry	370
	12.2	Solution for Baseline and	
		Source-Position Vectors	372
		Connected-Element Systems, 372	
		Measurements with VLBI Systems, 374	
	12.3	Time and the Motion of the Earth	378
		Precession and Nutation, 378	
		Polar Motion, 379	
		Universal Time, 380	
		Measurement of Polar Motion and UT1, 381	
	12.4	Geodetic Measurements	383
	12.5	Mapping Astronomical Masers	384
	Appe	endix 12.1 Least-Mean-Squares Analysis	388
13.	PRO	PAGATION EFFECTS	405
	13.1	Neutral Atmosphere	406
		Basic Physics, 406	
		Refraction and Propagation Delay, 411	
		Absorption, 417	
		Origin of Refraction, 421	
		Smith-Weintraub Equation, 426	
		Phase Fluctuations, 428	
		Water Vapor Radiometry, 436	

XX	Cor	ite	nts

	13.2	Ionosphere	439
		Basic Physics, 440	
		Refraction and Propagation Delay, 444	
		Calibration of Ionospheric Delay, 446	
		Absorption, 447	
		Small- and Large-Scale Irregularities, 447	
	13.3	Scintillation Caused by Plasma Irregularities	449
		Gaussian Screen Model, 449	
		Power-Law Model, 454	
	13.4	Interplanetary Medium	455
		Refraction, 455	
		Interplanetary Scintillation, 458	
	13.5	Interstellar Medium	460
		Dispersion and Faraday Rotation, 460	
		Interstellar Scintillation, 462	
14.	RAD	IO INTERFERENCE	470
	14.1	General Considerations	470
	14.2	Connected-Element Arrays	473
		Fringe-Frequency Averaging, 473	
		Decorrelation of Broadband Signals, 477	
	14.3	Very-Long-Baseline Systems	478
	14.4	Interference from Airborne and Space Transmitters	480
15.	REL	ATED TECHNIQUES	482
	15.1	Intensity Interferometer	482
	15.2	Lunar Occultation Observations	487
	15.3	Measurements on Antennas	490
	15.4	Optical Interferometry	493
		Modern Michelson Interferometer, 494	
		Optical Intensity Interferometer, 497	
		Speckle Interferometry, 497	
PRI	INCIP.	AL SYMBOLS	503
ΑU	THOR	INDEX	513
SUI	ВЈЕСТ	INDEX	521