

月 次

1. 序 論	1.8.3 与像,果合の震度
T. 11. Hutt	1.9 位相空間22
1.1 数の表現1	1.9.1 距離空間,位相空間22
1.1.1 n進法1	1.9.2 写像の連続性23
1.1.2 連分数1	1.9.3 集積点, 閉集合, 開集合,
1.2 初等整数論3	粗, 連結, コンパクト23
1.2.1 定 義 3	1.9.4 相対位相24
1.2.2 定 理3	1·9·5 位相積,Tychonoff の定
1・3 順列,組合わせ及び二項定理,	理
多項定理5	1·10 (代数的) 位相幾何学入門25
1.3.1 順 列5	1·10·1 一次元複体又は線状複体 25
1・3・2 組合わせ5	1·10·2 二次元集合体としての曲
1・3・3 二項定理及び二項係数6	面の分類26
1.3.4 多項定理 6	1·10·3 n 次元への拡張
1.4 部分分数7	9 15 **
1.5 不等式7	2. 一次代数
1·5·1 Schwarz, Hölder 及び	2.1 行 列
Minkowski の不等式 7	2·1·1 行列の定義, 記号 29
1.5.2 平均の間の不等式,凸函数7	2・1・2 行列の算法29
1.6 三角法8	2・1・3 行列の行列式, 階数,
1·6·1 三角函数, de Moivre	逆行列,固有和 .3 1
の公式等9	2·1·4 n×n 行列の対称性32
1・6・2 三角形(平面及び球面)に	2.1.5 行列の変換33
関する公式	2·1·6 n×n 行列の多項式,函数35
1.6.3 双曲線函数12	2.2 行列式
1.7 高次方程式14	2・2・1 行列式の定義36
1.7.1 解の公式14	2・2・2 行列式の主要性質37
1.7.2 n 次方程式14	2・2・3 行列式の値の計算法38
1.7.3 実係数の n 次方程式 15	2.2.4 特殊行列式38
1・7・4 複素係数の n 次方程式に	2.2.5 函数行列式40
対する Sturm 型の定理等16	2.3 連立一次方程式42
1.7.5 数值解法17	2.3.1 定 義
11·8 集合算, Boole 代数 19	$2\cdot 3\cdot 2$ $m=n$ である場合の可解性の
1.8.1 集 合	条件
1·8·2 Boole の代数20	2.3.3 数值解法44

次

2・4 一次変換と二次形式44	3・2・5 回転群の表現67
2・4・1 線形空間又はベクトル空間44	3·2·6 Lorentz 群及びその表現72
2.4.2 一次変換	3.2.7 結晶族群
2・4・3 双対空間又は共軛空間48	3·3 Racah 代数
2・4・4 二次形式及びエルミット	3.3.1 角運動量演算子81
形式	3·3·2 角運動量の合成, Wigner
2・4・5 ウニタリ変換及び直交変換51	係数
2.5 非負の行列53	3・3・3 3 個および 4 個の角運動量
2.5.1 定義, 記号	の合成, \mathbf{Racah} 係数と X 係数 83
2·5·2 Hawkins-Simon の条件53	3・3・4 テンソル代数84
2·5·3 Frobenius の定理,	A
Frobenius 根	4. 解析幾何学,射影幾何学
2·5·4 Frobenius 根の性質54	4・1 平面及び立体解析幾何学87
2・5・5 分解不能な非負の行列の	4·1·1 線 分
性質54	4·1·2 平 面
2・5・6 分解不能を仮定しない非	4.1.3 立 体
負の行列の性質54	4.2 射影幾何学91
2.5.7 確率行列55	4.2.1 射影空間91
2.6 線形不等式と凸集合56	4.2.2 射影的対応92
2.6.1 線形不等式	4.2.3 二次曲面93
2・6・2 上記の定理の応用56	4・2・4 二次元の射影空間 (射影平
2•6•3 凸集合	面)の性質94
2.6.4 凸錐, 凸多面錐57	4・2・5 射影変換群の部分群とこれ
2・6・5 線形不等式の一般解58	に伴う幾何学95
3. 群論及び群の表現論	4.3 計算図表96
3. 辞論及び辞り表光論	4⋅3⋅1 概 説96
3.1 群,環,及び体59	4.3.2 共点図表96
3.1.1 定 義	4.3.3 共線図表
3.1.2 対称群60	4・3・4 共線図表と共点図表の関係99
3·1·3 部分群,正規部分群,	4・3・5 変数の数が3個以上のとき99
剰余類61	5. 微分幾何学
3·1·4 同型, 準同型	9. 做分茂例字
3・2 群の表現61	5·1 曲線論
3·2·1 定 義	5.1.1 方程式
3・2・2 表現の可約性, 既約性, 不	5・1・2 曲線の長さ 103
変部分空間62	5·1·3 接線及び接線ベクトル 103
3・2・3 有限群の表現論64	5·1·4 曲 率104
3・2・4 対称群の表現65	5·1·5 接触平面, 主法線, 陪法線. 104

5·1·6 Frenet の公式105	5・6・2 スカラー場及びベクトル場
5・1・7 曲線の自然方程式108	における微分作用素 129
5・2 曲面論	5・6・3 曲線座標系における表示 130
5・2・1 接平面及び法線の方程式 100	5・6・4 特殊なベクトル場 130
5・2・2 第一基本二次微分形式及び	5.6.5 線積分 130
基本テンソル106	5・6・6 線積分に関する基本定理と
5·2·3 Gaussの全曲率107	ベクトル場131
5・2・4 第二基本微分形式及び主	5·6·7 平面上での Gauss, Stokes
テンソル	及び Green の定理 132
5・2・5 曲面論の基本定理 108	5・6・8 曲面及び曲面上の座標系. 133
5・2・6 曲面の法曲率109	5.6.9 面積分134
5・2・7 主方向及び主曲率 109	5・6・10 Gauss, Stokes 及び
5・3 歯車の理論110	Green の定理 135
5・3・1 平歯車の歯形110	5.7 テンソル解析136
5・3・2 空間歯車の基礎方程式 111	5・7・1 一点 P におけるテンソルの
5·4 座標系112	定義136
5・4・1 n次元ユークリッド(点)空	5・7・2 テンソルに関する演算 137
間 112	5・7・3 テンソルであるための判定
5・4・2 Rnの座標枠及び直線座標 113	条件138
5・4・3 直線座標系の間の関係 113	5・7・4 対称テンソル及び交代テン
5.4.4 曲線座標系113	ソル
5・4・5 曲線座標系の自然座標枠と	5・7・5 ベクトルの外積138
座標変換, ユークリッド空間	5・7・6 一点 P における密度テンソ
の基本テンソル 114	ルと密度スカラー139
5・4・6 線素及び体積要素115	5・7・7 交代テンソルの対偶テンソ
5·4·7 Christoffelの記号115	ル 140
5・4・8 ユークリッド空間の方向附	5•7•8 テンソル場140
けと座標系の正負116	5・7・9 テンソル場の共変微分141
5・4・9 三次元空間におけるベクト	5.7.10 平行ベクトル場 143
ル積116	5・8 リーマン幾何学143
5・5 特殊な直交座標系117	5・8・1 多様体及び多様体における
5.5.1 平面の場合117	ベクトル,テンソル....143
5.5.2 三次元の場合 118	5・8・2 リーマン空間143
$5\cdot 5\cdot 3$ n 次元空間の極座標 $(r, artheta_1,$	5.8.3 基本テンソル, ベクトルの
$\theta_2, \dots, \theta_{n-1}) \dots 124$	長さ及び二つのベクトルの
5・5・4 変数分離の例 125	間の角144
5・6 ベクトル解析128	
5.6.1 ベクトル場 128	

5・8・5 平行ベクトル場,測地線(Ⅱ).145	6・4・11 多変数の正則函数 182
5.8.6 ベクトルの平行移動 145	6.5 級 数185
5.8.7 リーマン空間の曲線のユー	6.5.1 数 列185
クリッド空間への展開 145	6.5.2 無限級数187
5.8.8 曲率テンソル 146	6.5.3 二重数列 192
5·8·9 曲率テンソルの性質, Ricci	6.5.4 二重級数 192
のテンソル,曲率スカラー.. 147	6.5.5 変数項の級数194
5·8·10 Bianchi の恒等式 148	6.5.6 羅級数 195
5.8.11 測地座標系 148	6.5.7 無限乗積196
a fry two two th	6.5.8 雑級数
6. 解析概論	6.5.9 漸近級数199
6·1 微分積分149	6・5・10 収斂しない級数の総和法. 204
6・1・1 函数の連続性149	6.6 多変数函数
6·1·2 有界変動の函数150	6.6.1 多複素変数の函数 207
6·1·3 微分 (一変数)150	6・6・2 多変数の正則函数 207
6·1·4 偏微分152	6.6.3 羅級数 209
6·1·5 積 分 155	6.6.4 特異点
6·1·6 多重積分162	6.6.5 正則領域
6·1·7 Stieltjes 積分 164	
6.2 数值積分法164	7. 常微分方程式
6・2・1 補間法の応用164	7.1 一般的性質
6.2.2 平均值法165	7.1.1 存在定理
6・2・3 広範囲の積分167	7・1・2 解の種類 213
6·3 Lebesgue積分 167	7.2 一階微分方程式213
6・3・1 n 次元ユークリッド空間に	7.2.1 初等解法
おける Lebesgue 積分 167	7.3 高階微分方程式216
6·3·2 抽象的 Lebesgue 積分 170	7.4 線形微分方程式217
6.4 函数論	7.4.1 一般的性質 217
6・4・1 複素変数の函数171	$7\cdot 4\cdot 2$ $L(y) = F(x)$ の特解を見出
6·4·2 正則函数 172	す法 218
6·4·3 積分定理174	7・4・3 定数係数の場合 218
6·4·4 整函数176	7.5 連立常微分方程式 220
6·4·5 孤立特異点, Laurent 展開. 177	7.5.1 一般の場合 220
6·4·6 有理型函数178	7.5.2 線形方程式 220
6·4·7 一次函数 179	7.6 定積分による解法 221
6.4.8 解析接続179	7·6·1 Laplace 変換 221
6·4·9 等角写像181	7·6·2 Euler 変換 221
6·4·10 鞍部点法182	7.7 級数解法

8・1・1 特殊な形をもつ場合
(完全解)251
8·1·2 Lagrange の方法 251
8·1·3 Charpit の方法 252
8·1·4 Jacobi の方法 252
8·1·5 Jacobi 及び Mayer の方
法253
8·1·6 連立偏微分方程式 254
8.1.7 線形連立方程式254
8·1·8 E. Cartan の微分形式 255
8.2 二階偏微分方程式256
8・2・1 完全解から一般解を導く方
法256
8.2.2 中間積分257
8・2・3 中間積分のある場合
(Monge の方法)257
8・2・4 中間積分のない場合
(Darboux の方法) 258
8·2·5 Laplace の方法 258
8·2·6 Ampère の方法 259
8・2・7 その他の方法260
8.3 切触変換
8.3.1 定 義 260
8·3·2 Legendre 変換, 正準変換. 261
8・3・3 切触変換の一般の形 262
8・4 一階偏微分方程式の初期値問題. 263
8.4.1 準線型方程式263
8・4・2 一般の場合265
8.5 二階偏微分方程式の分類 266
8.5.1 二階線型方程式 266
8.5.2 二階準線型方程式 268
8・5・3 高階方程式および連立方程
式268
8.6 楕円型偏微分方程式268
8·6·1 Laplace および Poisson の
方程式268
8・6・2 Helmholtz の方程式 271
8・6・3 一般の二階線型方程式 272

8.6.4 固有值問題 273	11. 函数解析
8.7 双曲型偏微分方程式 275	
8.7.1 波動方程式 275	11·1 Fourier 級数 305
8・7・2 一般の電信方程式 277	11·1·1 定 義 305
8・7・3 2 変数の方程式278	11·1·2 Fourier 級数に対する主
8・7・4 時間的に一様な一般の方	要事項
程式 279	11·1·3 Fourier 級数の例 306
8.8 放物型方程式 280	11·1·4 多変数函数の Fourier
8・8・1 熱伝導の方程式280	級数309
8・8・2 一般の放物型方程式 281	11·1·5 Poisson の総和公式 309
8·8·3 Schrödinger 方程式 281	11.1.6 調和分析 310
8・9 変数分離の方法282	11·2 Fourier 変換 313
8・9・1 双曲型及び放物型 282	11.2.1 定 義313
8.9.2 楕円型282	11·2·2 Fourier 変換の性質 314
0 nt 1 14	11.2.3 拡張 1 315
9. 変 分 法	11·2·4 拡張 2. Plancherel の
9・0・1 有限箇の変数の函数の極値	定理 315
問題 287	11·2·5 Fourier 変換の表 316
9・0・2 変分法の問題 287	11·2·6 多変数函数の Fourier
9·0·3 Euler の (微分) 方程式 288	変換
9.0.4 詳細な条件288	11·2·7 Hankel 変換 321
9·0·5 Euler 方程式の積分 289	11·2·8 Hilbert 変換 323
9.0.6 境界条件	11·2·9 Mellin 変換 322
9・0・7 その他の汎函数 290	11.3 調和解析 325
9.0.8 条件付変分法291	11.3.1 問題328
9・0・9 解析力学への応用 291	11・3・2 正の定符号函数 324
9・0・10 変分法の直接解法 292	11.3.3 拡 張 328
9・0・11 線型の問題 292	$11\cdot 3\cdot 4$ $f(t) = \int_{-\infty}^{\infty} e^{i\lambda t} dv(\lambda) \mathcal{O}$
	調和解析
10. 積分方程式	11.3.5 概週期函数 328
10・0・1 定義及び分類 295	11·3·6 概週期函数 f(t) の調和
10.0.2 解法 (連続解) 295	解析
10・0・3 対称核の場合298	11・4 Laplace 変換及び Heaviside
10・0・4 その他の場合299	の記号解析
10.0.5 特異積分方程式 300	11・4・1 定義及び収斂域 32
10・0・6 多変数への拡張 301	11.4.2 反転公式
10・0・7 積分方程式の応用 301	11·4·3 Heaviside の記号解析 32
10.0.8 数值解法 302	 11·4·4 Heaviside の記号解析の

使用法	11·8·4 Hahn-Banach の拡張
11.5 ヒルベルト空間論 336	定理
11.5.1 作用素の定義 336	11・8・5 双対空間, 強収斂と弱
11.5.2 作用素の対称性 337	収斂
11.5.3 スペクトル分解 338	11.8.6 双対または共役作用素 358
11.5.4 スペクトル分解の固有値	11・8・7 スペクトルおよび
問題への応用 338	レゾルベント 354
11.5.5 スペクトル分解の展開定	11・8・8 コンパクト作用素,
理への応用339	Riesz-Schanderの理論 354
11·5·6 Stone の定理 341	11・8・9 有界作用素の半群 358
11・5・7 ウニタリ作用素のスペク	
トル分解 341	12. 補間法及び差分法
11.5.8 摂動論 341	12.1 補間法
11.6 超函数 342	12·1·1 階 差 357
11.6.1 定 義 342	12.1.2 補間公式 357
11·6·2 Dirac の δ 函数及び	12·1·3 階差を用いない場合 362
Heaviside の Y 函数の意	12·1·4 Prony の補間法 362
味付け	12.2 差分法 363
11・6・3 超函数の表現 344	12·2·1 差 分363
11・6・4 超函数の概念の n 次元ユー	12·2·2 和 分364
クリッド空間 R^n への拡張 \ldots 344	12·2·3 Bernoulli 数及び
11・6・5 超函数の算法 345	Bernoulli の函数 366
11・6・6 超函数の微分方程式 345	12.3 差分方程式
11·6·7 超函数による Fourier 級	12.3.1 定 義
数論	12·3·2 線型差分方程式 368
11·6·8 超函数による Fourier	12・3・3 定数係数の線型差分方程
積分	式368
11·7 Mikusiński の演算子法 350	12.3.4 定数係数連立差分方程式 . 369
11・7・1 Titchmarsh の定理 350	12·3·5 一般線型差分方程式 37
11・7・2 Mikusiński のオペレータ、350	12.3.6 偏差分方程式 37
11・7・3 積分オペレータと微分	10 life relative
オペレータ 350	13. 特殊函数
11・7・4 スカラーオペレータ 350	13.1 ガンマ函数 378
11・7・5 Mikusiński の演算子法 351	13・1・1 定義及び基本性質 373
11.8 バナハ空間 351	13·1·2 諸性質 374
11.8.1 定 義	13.1.3 漸近展開
11.8.2 部分空間,作用素 352	13·1·4 ベータ函数 37
11・8・3 閉作用素, 閉グラフ定理 . 352	13・1・5 ブシィ函数 37

13·1·6 雑性質 378	13·7·2 Weierstrass の函数 477
13.2 直交函数系378	13.7.3 分函数 482
13·2·1 定 義378	13·7·4 Jacobi の楕円函数 485
13·2·2 直交函数系による Fourier	13・7・5 種々なパラメータ間の関
級数, Bessel 不等式 379	係,諸函数間の関係490
13・2・3 正規直交函数系の完全性 . 379	13.7.6 楕円積分 493
13.2.4 直交化379	13.8 エムデン函数 500
13.2.5 直交多項式 380	13.8.1 定 義 500
13·2·6 Gegenbauer 多項式 395	13.8.2 性 質 500
13・2・7 Tschebyscheff の多項式	13.8.3 解曲線 500
$T_n(x)$ の諸性質 396	
$13\cdot 2\cdot 8$ Hermite 多項式 $H_n(x)$	14. 確率及び統計
の諸性質397	 14·1 確率論 501
$13\cdot 2\cdot 9$ Jacobi 多項式 $F_n(\alpha,\gamma,x)$	14·1·1 測度論的確率論 501
の諸性質398	14.1.2 確率変数 502
$13\cdot 2\cdot 10$ Laguerre 多項式 $L_{m}{}^{(lpha)}(x)$	14·1·3 一次元分布 505
の諸性質398	14.1.4
13·3 Bessel 函数 399	14・1・5 大数の法則 509
13・3・1 定義と性質 400	14.1.6 確率過程 510
13·3·2 Bessel 函数を含む定積分. 423	14.2 統 計514
13·3·3 Bessel 函数を含む級数 431	14·2·1 記述統計 514
13·3·4 准 Bessel 多項式 437	14・2・2 推測統計とは何か 516
13·3·5 准 Bessel 函数 444	14.2.3 分布論 516
13·4 Whittaker 函数 453	14·2·4 推定論 518
13.4.1 定 義 453	14·2·5 検定論 522
13.4.2 諸性質 455	14.3 最小自乗法 525
13·4·3 Weber の函数 458	14·3·1 偶然誤差 525
13·5 Mathieu 函数 461	14・3・2 直接観測の処理 526
13.5.1 定 義 461	14・3・3 間接観測の処理 526
13.5.2 簡単な性質 466	14・3・4 条件附き間接測定 527
13·5·3 Mathieu 函数の変形 467	D 表
13.5.4 第二の解 468	
13·5·5 Bessel 函数による表現 469	15. 最適問題
13·6 Lamé の函数 471	10. 以 加 [1] [2]
13.6.1 定 義 471	15·1 線形計画法,非線形計画法537
13.6.2 楕円体面調和函数 473	15·1·1 線形計画法 537
13・7 楕円函数と楕円積分 475	15.1.2 単体法 538
13・7・1 定義と基本定理 475	15·1·3 単体法による計算法 540

15.1.4	改訂単体法 543	15・2・11 矩形ゲームへの標準化	562
15.1.5	双対性 544	15.3 ダイナミックプログラミング .	563
$15 \cdot 1 \cdot 6$	網目状の流れ 546	15·4 Pontrjagin の最大原理	567
$15 \cdot 1 \cdot 7$	割り当て問題 547	15.4.1 定 義	567
15.1.8	輸送問題 548	15.4.2 最大原理	568
15.1.9	非線形計画法 552	15・4・3 時間最適問題における	
15・2 矩形	ジゲーム 555	最大原理	569
$15 \cdot 2 \cdot 1$	矩形ゲーム 555	15・4・4 動端点の場合	570
15.2.2	サドル 556	15・4・5 線形系の時間最適問題	571
$15 \cdot 2 \cdot 3$	平均得点 556	15・4・6 シンセシス問題	572
$15 \cdot 2 \cdot 4$	最適戦法 557	15・4・7 一般の場合	573
15.2.5	矩形ゲームの基本定理 557	15・4・8 函数近似問題への応用	573
$15 \cdot 2 \cdot 6$	最適戦法の性質 558	数学記号集	575
$15 \cdot 2 \cdot 7$	全部の最適戦法を求める	I 論理計算記号	
方	法559	II 一般記号	
15.2.8	対称ゲーム 560	【附】函数記号表	
15.2.9	矩形ゲームと線形計画法 . 560		
15.2.10	一般のゲーム 561	索 引	589