CONTENTS

Pref For Con	ace ewor tent	to volt d to v s	ume II olume II	v vii xi
13.	Ar	alytic	al Approximation Techniques for Evaluating	
	Di	ffusio	n-Controlled Oxidation Kinetics and the Corresponding	
	De	fect P	rofiles in Perturbing Space-Charge Fields	1
	1.	Intro	oduction	1
	2.	The	averaging technique	3
		2.1.	Basic concept	3
		2.2.	Simple applications	3
		2.3.	Case of a uniform trapped defect distribution	5
			2.3.1. Electric fields	5
				-

	<i>2.3.2</i> .	Rate-limiting current and concentration profile	
		from exact integration	8
	2.3.3.	Rate-limiting current deduced by the averaging	
		technique	13
2.4.	Linear	space-charge distributions	23

2.5.	Exponential space-charge distributions	27
2.6.	Power series expansions and numerical evaluation of	
	space-charge distributions	29
The	perturbation approach	48
<i>3.1</i> .	Introduction	48
3.2.	First-order perturbation treatment for two diffusing	

2.	First-order perturbation treatment for two diffusing			
	species		50	
	<i>3.2.1</i> .	Separation into perturbed and unperturbed		
		distributions	50	

3.

Con	tents
	~~ · · · · · ·

.

			<i>3.2.2</i> .	Small surface-charge-field solution	52
			<i>3.2.3</i> .	Large surface-charge-field solution	57
		<i>3.3</i> .	Second	l-order perturbation treatment for two diffusing	
			species		61
			3.3.1.	Development of basic equations	61
			3.3.2.	Numerical solution and approximate	
				film-growth equations	64
	4.	Sum	mary an	id conclusions	70
14	- Sn	ace-C	harge M	adifications in the Model Based on Thermal	
14.	Fl	acc-C	Emissic	on and Ionic Diffusion	73
	1	Intro	duction		73
	2	Onti	ine of th	ne model	73
	2.	21	Counta	ad currents	73
		2.1.	Lonic c	u currents	15
		_ 2.2.	case of	f space charge produced by a single diffusing	
			cuse of	space charge produced by a single all using	74
		23	Floot	onic current: thermal emission over the	/4
		2.3.	matal	oxide work function barrier as modified by image	
			notont	ials the surface charge field and the space charge	
			field d	has, the surface-charge field, and the space-charge	70
		21	Numar	tie to the diffusing tonic species	10
		2.4.	Floot	ical lechniques	02
		2.5.	Maaro	mic equilibrium timit	03
		2.0.	Macro	scopic electric fields in the limit of a birtual lonic	05
	2	NI	current	equiliorium	02
	5.	2 1	Tampa	tsuits	93
		2.1.	Dener	dance on manage change porturbation parameter	110
		J.2.	Depend	dence on space-charge perturbation parameter	110
		5.5.	Depend	sence on value of the tonic boundary concentrations	105
		24	wiin ji)	dense an the house dense af the law of the	125
		3.4.	Depend	tence on the boundary balle of the lower defect	
6			concen	tration (with fixed boundary value of the higher	125
			aeject	concentration)	135
		3.3.	Depend	sence on activation energy for ionic conduction	140
		J.O.	Kinetic		148
		3.7.	Metal-	-oxide and oxygen-oxide work function	154
·			aepena	ence	154
			3.7.1.	Decrease in χ_0 with fixed V_M when the system is	
				aireaay in a virtual electronic current equilibrium	104
		οr.		conaition	154
			3.7.2.	Increase in V_M with fixed χ_0 when the system is	
				in a virtual electronic current equilibrium	1.65
				condition	155

хü

			Çontents	xiii
		<i>3.7.3</i> .	Increase in V_M with fixed χ_0 when the system is not in a strong virtual electronic current	
			equilibrium condition	157
	3.8.	Agreer	nent of the theoretical kinetics in the virtual ionic	
		curren	t equilibrium limit with experimental data	163
		3.8.1.	The approach	163
		3.8.2.	Comparison of theory with experimental data of	
			Anderson	168
4.	Sum	mary		170
		-		
Ox	idatic	n Kinet	ics in the Large-Space-Charge Diffusion-Contro	lled
T in		به سينا اس	Also Thirds Eller D. 1. 11. C. al. I.	

15.

1.11	and Leading to the Timek-Timi Tatabone Orowin Law	1/1
1.	Introduction	171
2.	Numerical computations justifying the local	
	space-charge-neutrality hypothesis for thermal oxidation	
	in the thick oxide film limit	172
3.	Analytical approach with two diffusing species based on the	
	local space-charge-neutrality hypothesis	177
4.	The interfacial zone equilibrium approximation	181
	4.1. The approach	181
	4.2. The three zones	181
	4.3. Equilibrium profiles	182
	4.4. Extrapolated boundary concentrations	184
5.	Analytical evaluation of rate constants, enhancement factors,	
	and built-in potentials for two-species growth in the thick	
	film limit	185
	5.1. Thick-film parabolic rate constant	185
	5.2. Thick-film enhancement factor	188
	5.3. Built-in voltage across thick oxide films	190
	5.4. Concentration, potential, and field profiles in the zone of	
	local charge neutrality	192
6.	Quantitative estimates for the extent of the interfacial	
	equilibrium regions in the zonal approximation	195

16.	6. The Virtual Current Equilibrium Approximation for Two		
	Di	ffusing Species in the Large-Space-Charge Limit	199
	1.	Equilibrium considerations and single-current approaches	199
	2.	Quantitative definition of a virtual current-equilibrium	200
		2.1. Basic equations	200
		2.2. Virtual current equilibrium approximation	201
	3.	Solution for two diffusing species	206

17.	Th	ree Di	iffusing Species in the Thick-Film	
	Vir	tual-C	Current - Equilibrium Limit	212
	1.	Com	plexities of the multidiffusion case	212
		1.1.	Thick-film approximations	212
		1.2.	Numerical approach	213
		1.3.	Virtual current equilibrium condition for two species	213
		1.4.	Various categories of three-species growth in the virtual	11.000 (10.000) - N.000
			current equilibrium limit	214
	-	1.5.	Use of the zonal approximation	215
	2.	Solut	tion for ionic rate-limited oxide growth with electrons	
		and	electron holes in a virtual current equilibrium condition	218
		2.1.	Parabolic rate constant and enhancement factor	218
		2.2.	Concentration profile for the rate-limiting ionic species	222
		<i>2.3</i> .	Electric fields and electrostatic potentials for monovalent	0.22
		1990.0	ionic species	224
		2.4.	Electric fields and electrostatic potentials for polyvalent	
			ionic species	226
		2.5.	Charge density profiles	229
		2.6.	Concentration profiles for virtual current equilibrium	
			electrons and electron holes	230
		2.7.	Law of kinetic mass action	231
		2.8.	Explicit evaluation of the rate constant and profiles in	
			terms of bulk defect concentrations at the interfaces	231
			2.8.1. Boundary concentrations in zone 2	231
			2.8.2. Positively-charged monovalent ionic species	232
			2.8.3. Negatively-charged monovalent ionic species	234
	3.	Solu	tion for electronic rate-limited oxide growth with two	
		ionic	species in a virtual current equilibrium condition	236
		3.1.	Various possibilities	236
		3.2.	Subcase a: $Z_1/Z_2 = +1$; species 3 is the rate-limiting	
			electronic species	237
		<i>3.3</i> .	Subcase b: $Z_1/Z_2 = -1$; species 3 is the rate-limiting	- ·
			electronic species	247
			3.3.1. General solution	247
			3.3.2. Specific evaluation for $Z_1^2 = I$	251
			3.3.3. Specific evaluation for $Z_1^2 \ge 1$	259
		3.4.	Subcase c: $Z_1/Z_2 = +2$; species 3 is the rate-limiting	
			electronic species	265
		3.5.	Subcase d: $Z_1/Z_2 = n$ (n arbitrary); species 3 is the	
			rate-limiting electronic species	270
	4.	Exar	nples of experimental measurements indicating parabolic	2
		grow	th in the thick oxide film limit	275

t

Contents

xiv

potentials, electric fields, and defect density profiles for a single	
diffusing species to the corresponding equilibrium forms	281
Appendix I Classical Screening	284
1. Debye approximation for the one-species case	284
2. Exact solution for the one-species equilibrium case	286
3. Approximate solution based on the one-species	
non-equilibrium case	288
4. Debye approximation for the two-species case	289
5. Exact equilibrium solution for two charged species	292
6. Non-equilibrium case for two charged species	301
7. Qualitative aspects of the equilibrium charge density profiles	
for the one and two species cases	311
Annendix I Equilibrium Mass Action Products	210
Appendix J Equilibrium Mass Action Floducts	519
References	321
A4h	225
	323
ubject index 327	

Contents

ch. 14 which can be employed to reduce the exact steady-state

Appendix H Airy Function Identities Airy function identities utilized in the numerical computations of

xv