Prefac	, , , , , , , , , , , , , , , , , , ,	Page
		ix
Chapter 1. QUANTUM THEORY		
<u> </u>	The real gas	1 1
1.2	The regime of the real gas	2
1.3	The quantum concept and its experimental verification	3
1.4	Bohr's theory of the atom and molecule	6
1.5	Matrix mechanics	9
1.6	Wave mechanics and wave packets	9
1.7	Wave mechanics of atoms and molecules	12
1.8	The meaning of ψ and the Heisenberg uncertainty principle	15
1.9	Operators in wave mechanics	18
1.10	Angular momentum	20
	Wave mechanics of complex atoms and molecules	21
	The Born-Oppenheimer approximation in molecules	23
	Electronic states of an atom	24
1.14	Homopolar valence bonding	29
	Quantum numbers of a molecule	31
1.16	The Wigner-Witmer rules	34
2. Th	ERMODYNAMICS	37
2.1	Thermal equation of state	37
2.2	Mixtures of thermally perfect gases	38
2.3	The laws of thermodynamics. Some necessary definitions	40
2.4	The first law of thermodynamics	41
2.5	Reversible and irreversible processes	42
2.6	The second law of thermodynamics and entropy Work	43
		44
2.8	The thermodynamic equation	45
2.9	Other forms of the thermodynamic equation	46
	Mixtures of thermally perfect gases	48
2.11	Chemical reactions and equilibria	51
3. St.	ATISTICAL MECHANICS	57
3.1	Entropy and probability	58
	Quantum statistical mechanics	59
3.3	A simple thermodynamic system	60
3.4	The most probable state	62
3.5	Entropy of the system	63
3.6	Gaseous systems	64
	Partition functions	66
3.8	Factorization property of partition functions	68
	Translational motion	70
3.10	Rotational motion. Diatomic molecules	74

2 1 1	Vibrational angular and dissociation	76
	Vibrational energy and dissociation	76
	Electronic and nuclear energy	81
	Caloric equations of state and specific heats of pure gase	
	Mixed gases and chemical equilibrium	86
	The dissociating homonuclear diatomic gas	91
3.16	The ideal dissociating gas	93
3.17	Molecular velocities. The Maxwellian distribution	96
4. Cr	HEMICAL REACTION RATES	100
	Reaction rates and chemical times	100
4.2	The symmetrical diatomic gas	103
4.3	The reaction rate constant	104
	The absolute theory of reaction rates	109
	The steric factor	115
	Relaxation of a two quantum level molecular gas	116
5. No	on-equilibrium Theory	119
	The Boltzmann equation	120
	Molecular velocities and fluxes	122
	The equations of change	128
	Molecular collisions	134
	Molecular collisions (continued)	138
	Equilibrium solutions	140
		140
	Series solution of the Boltzmann equation	152
	Some special cases	
	The Eucken-corrected thermal conductivity	155
5.10	. Elementary kinetic theory	157
6. Ti	MEORETICAL GAS DYNAMICS	165
6.1	A general thermodynamic equation	165
6.2	The entropy equation	170
	Mass conservation equation	175
6.4	Entropy rise due to chemical reactions	179
	Sound propagation in an ideal dissociating gas	182
6.6	Acoustic approximations	191
6.7		201
	Characteristics	203
6.9	2 22 2	210
	The fully dispersed shock wave	216
	Bulk viscosity and relaxation times	223
6.12	Partly dispersed wave. Relaxation zones	225
6 12	Equations of change in a one-dimensional steady flow	227
	Relaxation zone in a dissociating diatomic gas	229
		235
	Equilibrium conditions behind a shock wave	240
	Nozzle flows	240 244
	Energy transfer. Accommodation effects	249
6.18	Energy flux through a pure polyatomic gas	2 4 9 259
6.19	Heat transfer through a reacting mixture	239

apter		rage
Тн	E PHYSICS OF GAS DYNAMICS	275
7.1	Collisions in hot gases	275
7.2	Types of inelastic collisions	276
7.3	The wave mechanical calculation of the differential scattering	
	cross section	277
7.4	The incident partial waves	278
7.5	Angular momentum in atomic collisions	279
7.6	The scattered wave	281
7.7	The significance of the phase shifts	282
7.8	Quantum and classical elastic scattering cross sections	283
7.9	The inelastic scattering problem	284
7.10	The Born approximation	285
7.11	Other approximate solutions to the inelastic collision problem	286
7.12	The method of distorted waves	289
7.13	The method of perturbed stationary states	289
7.14	Ehrenfest's adiabatic principle applied to inelastic collisions	290
7.15	The shock tube	292
	The importance of vibrational relaxation	296
7.17	Derivation of the multi-quantum level population equation	296
7.18	The relaxation equation for a system of simple harmonic oscil-	
	lators	298
7.19	Relationships between the relaxation time and the parameters of	
	kinetic theory and quantum theory	300
7.20	The Landau-Teller theory using the older quantum mechanics	300
7.21	The role of the intermolecular potential in the energy transfer	
	process	302
7.22	Wave mechanical calculations of collisional transition probability	303
7.23	Adiabatic perturbation treatment of the intermolecular potential	304
	The wave mechanical calculations of Mott and Jackson	306
	The wave mechanical calculations of Herzfeld and co-workers	307
	Improvements in the analysis	308
7.27	The complete classical theory for the transition probability	309
	The wave mechanical calculations of Bauer and Salkoff	310
	Wave mechanical calculations of Widom	312
7.30	Vibrational relaxation in a pure diatomic gas	313
7.31	The Landau-Teller graphical plot of relaxation time	314
	Experimental studies of vibrational relaxation	316
7.33	Objections to macroscopic determination of vibrational relaxation	
	times	317
7.34	Vibrational relaxation studies using emission and absorption	
	techniques	319
	The theoretical relaxation studies of Shuler and his collaborators	322
	Solution of the vibrational relaxation Master Equation	326
7.37	Rotational and vibrational relaxation studies of Shuler et al.	32 9
	Rotational relaxation transition probabilities	331
	Experimental studies of rotational relaxation	332
	Vibrational relaxation in a thermally isolated system	333
7.41	Further comments on experimental studies of vibrational relaxa-	50000000000000000000000000000000000000
	tion	335

~	GOTTETTE	Page
Chapter 7 49	Further comments on relaxation within an internal energy mode	338
	Available energy theory of dissociation	339
	Improvements in the available energy theory	340
	Kinetics of dissociation	342
	The 'climbing the ladder' theory of dissociation	343
	The multi-level quantum jump theory of dissociation	348
	The recombination process	349
	The Rabinowitch collision theory of recombination	352
	The recombination collision theory of Marshall and Davidson	354
	Keck's statistical theory of recombination	356
	Bunker's analysis of the recombination Mechanism 1	358
	Absolute reaction rate theory of dissociation	360
	Wigner's theory of recombination	361
7.55	Keck's variational theory of recombination	362
7.56	Dissociation and recombination in a vibrationally relaxing gas	365
7.57	Experimental studies of dissociation and recombination in diluted	
	gases	368
7.58	Experimental studies of dissociation and recombination in pure	
	gases	372
	Collisions involving electronically excited molecules	374
	Quantum theory of chemical reactions	377
	Non-equilibrium chemical reactions	379
	Dissociation as a non-equilibrium chemical reaction	383
	Imperfect gases and the intermolecular potential	386
	Radiation from atoms	390
	Radiation from molecules	392
	Radiative transition probabilities	393
G (5) T A	Selection rules	402
	Molecular spectra (continued)	403
	Molecular transition probabilities	404
	Radiation from hot air	406
7.71	Non-equilibrium radiation	409
INDEX		415