Contents

	PREFACE.	V	
1.	Introduction.		
2.	THE NATURE OF THE MIXED STATE.	2	
	2.1. The Flux Vortex Lattice: Theory.	2	
	2.1.1. Calculations on the Abrikosov theory.	4	
	2.1.2. The London limit.	6	
	2.1.3. Extensions to the Abrikosov theory.	8	
	2.2. The Flux Vortex Lattice: Experiment.	11	
	2.2.1. Direct measurement of the vortex structure.	11	
	2.2.2. Measurement of the Ginzburg-Landau parameters.	13	
	2.3. The Equilibrium Thermodynamics of the Mixed State.	14	
	2.3.1. Calculation of the equilibrium mixed state structure.	. 16	
	2.4. Flux Vortex Driving Forces and Flux Flow.	17	
	2.4.1. Equilibrium under a virtual displacement of the flux		
	density.	19	
	2.4.2. The driving force through the generalized chemical		
	potential.	21	
	2.4.3. Flux flow and the transport properties of the mixed		
	${f state}.$	23	
	2.4.4. Flux lattice equilibrium in a temperature gradient.	30	
	2.4.5. Magnetization and transport currents.	31	
	2.5. Elastic Properties of the Flux Lattice.	33	
	2.5.1. The elastic constants.	33	
	2.5.2. Displacements due to local forces.	36	
	2.6. Flux Lattice Defects.	38	
	2.6.1. The nature and occurrence of defects.	38	
	2.6.2. Defects and the flux density gradient.	42	
	2.6.3. The dynamics of defects.	44	
3.	THE CRITICAL STATE EQUATION.	45	
	3.1. Consequences of Using H (B) rather than B .	46	
	3.1.1. Straight vortex lines.	46	
	3.1.2. Curved vortex lines.	49	
	3.2. Force-free Configurations and Longitudinal Fields.	5 0	
	3.2.1. The experimental and theoretical situation.	5 0	

		3.2.2. Typical force-free configurations.	52
		3.2.3. Configurations expected in practice.	55
		3.2.4. End effects.	58
		3.2.5. The energy and stability of force-free configurations.	59
		3.2.6. Critical currents and breakdown of force-free	
		configurations.	61
		3.2.7. Conclusions.	63
	3.3.	Solutions of the Critical State Equation.	65
		3.3.1. Slabs and long cylinders in parallel fields.	65
		3.3.2. Zero field critical currents.	67
		3.3.3. Specimens of arbitrary cross-section and zero	
		demagnetizing factor.	68
		3.3.4. Curved vortex lines.	71
		3.3.5. Thin strips and Corbino discs in transverse fields.	73
	3.4.	A.C. losses.	74
	3.5.	Experimental Confirmation of the Critical State Model.	77
		3.5.1. Quantitative tests of the model.	77
		3.5.2. Deviations from the critical state model.	79
4.		SUREMENT OF CRITICAL CURRENT DENSITIES.	81
	4.1.	Critical Currents in a Transverse Field.	81
	4.2.	Magnetization Measurements.	82
	4.3.	A.C. Methods.	83
		4.3.1. Measurements on a single harmonic.	84
		4.3.2. Total flux measurements.	84
		4.3.3. Errors and limitations of A.C. measurements.	90
	4.4.	Other Techniques for Investigating the Critical State.	91
		4.4.1. Force measurements.	91
		4.4.2. Direct measurements of the flux profile.	91
		4.4.3. Direct examination of the vortex distribution.	91
	4.5.	The Voltage Criterion.	92
_	N F	DANAMEN OF OWNER DANAMENERS	94
5.		SUREMENTS OF OTHER PINNING PARAMETERS.	94
		Low Amplitude A.C. Response.	99
		Flux Creep. Noise Measurements and 'Flux Bundles'.	104
	5.3.	Noise Measurements and Flux Dundles.	104
6	Prw	NING FORCES AND THEIR SUMMATION.	105
v.		Introduction.	105
	U.I.	6.1.1. Pinning by points, lines and planes.	106
		6.1.2. The statistical and dynamic approaches to pinning.	106
		6.1.3. The pinning threshold.	107
		6.1.4. The definition of terms.	108

		Calculation of the Pinning Threshold.	110
	6.3.	The Relationship Between the Dynamic and Statistical	
		Approaches.	111
		6.3.1. The derivation of the dynamic pinning force.	112
		6.3.2. The statistical derivation of a static pinning force.	115
	6.4.	Concentrated Arrays of Pinning Centres.	117
		6.4.1. General considerations, the one-dimensional model.	117
		6.4.2. Elasticity and the Labusch constant α .	120
		6.4.3. Summary of Labusch's theory and results.	123
		6.4.4. Matching and synchronization effects.	124
		The Situation for Line Forces.	127
	6.6.	The Situation at Plane Boundaries.	129
		6.6.1. A single plane boundary.	129
		6.6.2. Arrays of parallel planes and large precipitates.	130
		The Problem of Low Values of the Pinning Threshold.	131
	6.8.	Conclusions.	132
7.	BAS	IC PINNING INTERACTIONS.	133
		Introduction.	133
		7.1.1. Pinning through the Ginzburg-Landau free energy.	133
	7.2.	Pinning Interactions in a Stress-Free Material.	137
		7.2.1. Core pinning interactions.	138
		7.2.2. Magnetic pinning interactions.	139
		7.2.3. Approach through the Ginzburg-Landau free energy.	143
	7.3.	Pinning Interactions through the Elastic Energy.	144
		7.3.1. Approximate calculation of the interactions.	145
		7.3.2. Approach through the Ginzburg-Landau free energy.	148
		7.3.3. Stress dependence of the Ginzburg-Landau	ACC - 5777-1240
		parameters.	155
	7.4.	Pinning Forces Derived from the Mean Free Energy or	
		Limiting Velocity.	157
8.	Тня	EXPERIMENTAL SITUATION.	158
•		Analysis of Experimental Results.	158
		Low Amplitude A.C. Response.	160
	0	8.2.1. The initial response.	161
		8.2.2. The onset of irreversibility.	163
		8.2.3. The reverse curve.	163
	8.3.	Small Features.	164
		Surfaces and Boundaries.	167
		8.4.1. Specimen surfaces.	168
		8.4.2. Large precipitates.	172
		8.4.3. Grain boundaries and martensite boundaries.	177
		8 4 4 Interaction energy neaks	178

8.5. Dislocations.	180	
8.5.1. Nearly uniform dislocation structure	es. 180	
8.5.2. Non-uniform dislocation structures.	187	
8.6. Peak Effects and Matching.	193	
8.6.1. Mechanisms leading to peak effects.	193	
8.6.2. Comparison with experiment.	195	
8.7. Flux Lattice Defect Effects.	199	
8.7.1. The static pinning force.	200	
8.7.2. Flux flow effects.	205	
8.7.3. Discussion.	207	
8.8. General Conclusions.	207	
8.8.1. Implications for technological mater	ials. 207	
8.8.2. Summary of the present situation.	209	
ACKNOWLEDGMENTS.	210	
Appendices.	210	
References.	221	
Errata.	229	
AUTHOR INDEX.	231	
Subject Index.		
Index of Symbols.	239	