CONTENTS

CHAPTEI	A 1 THERMODYNAMIC PROPERTIES O	F	a G	AS					
1–1 1–2	Principles of Thermodynamics								$\frac{1}{9}$
Снартен	R 2 SHOCK HYDRODYNAMICS								
2-1	Normal Shock Waves								14
2 - 2	Normal Shocks in an Ideal Gas .								22
2 - 3	Weak Shock Waves								30
2-4	Oblique Shocks								31
2 - 5	Rarefaction Waves (Corner Flow)	•							37
2-6	Examples	•	٠	•	•	•	•	•	38
Снартен	3 Continuum Hydrodynamics								
3–1	The Equations of Motion				•				45
3-2	Constants of the Motion								51
3-3	Sound Waves							•	56
3 - 4	One-Dimensional Channel Flow .		•						61
3 - 5	The Free Expansion of a Gas \ldots	•	•	•	·	•	٠	٠	64
Снартен	R 4 Atomic and Molecular Phys	ICS	5						
4-1	Introduction								68
4 - 2	The Bohr Atom								69
4-3	The Schrödinger Equation								72
4-4	Spectroscopic Notation		•						79
4–5	The Molecular Potential Function		•						82
4–6	The H_2^+ Molecule								83
4-7	Molecular Electronic States				•				85
4-8	Vibration and Rotation								96
4-9	Molecular Spectra								109
4-10	van der Waals Forces								115
4-11	Franck-Condon Principle								117
4-12	Introduction to Atomic Collisions								119
4-13	The Concept of a Cross Section .								120
4-14	Photon Interactions with Photons ar	nd	Eleo	etro	ns				122
4-15	Electron-Electron Scattering								124
4-16	Photon-Atom Scattering						•		125
4–17	Bound-Bound Processes						•		127

4-18	Bound-Free Processes				131
4-19	Free-Free Processes				137
4-20	Electron-Atom Elastic Scattering				140
4 - 21	Electron-Atom Inelastic Scattering				142
4-22	Auger Emission				145
4-23	Three-Body Collisions Involving Electrons				146
4 - 24	Elastic Scattering of Atoms and Molecules				147
4 - 25	The Adiabatic Principle				150
4-26	Inelastic Scattering of Atoms and Molecules .				152
4-27	Charge Transfer				156
4-28	Formation of Molecules and Molecular Ions .				159
4 - 29	Photon Interactions with Molecules				164
4-30	Electron Collisions with Molecules and Molecula	r Io	ns		165
	¹¹ . 3.12 <u>12</u> .				
CHAPTE	r 5 Equation of State				
5 - 1	The Maxwell-Boltzmann Distribution Function	•	•		176
5 - 2	The Canonical Ensemble and the Density Funct	ion			182
5 - 3	The Equilibrium Distribution Function	•			186
. 5-4	The Monatomic Gas				193
5 - 5	The Diatomic Gas	•			212
5-6	Electromagnetic Radiation				222
5 - 7	The Fermi-Thomas Equation of State				225
Creation	D 6 KNUDBLA THEODY OF CLODE				
CHAPTE	R O. KINETIC THEORY OF GASES				005
6-1	General Considerations	•	•	·	235
6-2	The Molecular Distribution Function	•	•	٠	237
6-3	Some Elementary Concepts	•	٠	·	238
6-4	The Boltzmann Equation	•	•	·	241
6-5	Evaluation of the Collision Term	•	•	·	242
6-6	Boltzmann Equation for a Mixture of Gases .	•		·	245
6-7	The Boltzmann <i>H</i> -Theorem	•	·	•	245
6-8	A Simple Problem in Transport Theory	•	٠	÷	249
6-9	Application to Diffusion Through a Slab	•	•	•	253
6–10	The Coefficient of Diffusion	•	•	٠	255
6-11	Equilibrium Ionization in a Gas	-	•	·	256
CHADTE	P. 7 GENERAL THEORY OF TRANSPORT PROCESS	TS			
OHATTE	AND HYDRODYNAMICS				
7-1	General Theorem				262
7-2	Limiting Case for a Maxwell Distribution				265
7-3	The Method of Enskog and Chapman				266
7-4	Solution of the Lowest-Order Equation				267
7-5	Solutions of the Transport Equation				269

CONTENTS

7-6	Application to Transport Theory				271			
7-7	Hydrodynamic and Thermodynamic Relations							
7-8	Damping of Sound Waves							
7-9	Solution of Integral Equation; Variational Principle							
7-10) Calculation of the Viscosity and Thermal Conductivity							
CHAPTER	r 8 Dissociation and Ionization in a Gas							
8-1	Reaction Rates				282			
8-2	Photoionization and Detachment			•	290			
8-3	Nonradiative Recombination and Attachment .	•		•	292			
8-4	Molecular Dissociation and Recombination				295			
8-5	Hydrodynamic Equations for a Dissociating Gas				297			
8-6	Application to a Rocket Nozzle				299			
8-7	A Partially Ionized Gas				301			
8-8	Electrical Conductivity				304			
8-9	Refractive Index of an Ionized Gas		•	•	306			
CHAPTE	R 9 KINETIC THEORY OF TRANSPORT PROCESSES							
	in Multicomponent Gases							
9-1	Preliminary Discussion	•	•	٠	309			
9 - 2	The Collision Integrals			•	313			
9 - 3	Expansion of the Boltzmann Function		•	•	317			
9–4	The First-Order Equation		٠	•	318			
9 - 5	The Transport Equations				321			
9–6	Thermal Diffusion in a Two-Component System	•			325			
Chapte	r 10 Radiation Transport Theory							
10-1	Local Thermodynamic Equilibrium				329			
10–2	Macroscopic Quantities				332			
10-3	The Absorption, Emission, and Scattering Process	ses			334			
10-4	The Equation for Energy Balance				339			
10-5	The Diffusion Approximation				342			
10-6	The Emission Approximation		•		343			
10–7	Cold-Material Approximation		•		346			
Снарте	r 11 Opacity							
11-1	Calculational Procedure				350			
11-2	Statistical Mechanics				351			
11-3	The Line Opacity		•		352			
11-4	The Continuous Opacity				366			
11 - 5	Bounds on the Opacity.				371			
11-6	Emissivity of Air			•	373			
11-7	Bibliography				387			

12-1	The	Optical Depth			396
12 - 2	The	Milne Problem	•		398
12 - 3	Simil	arity Solutions in the Diffusion Approximation	•	•	400
12-4	The	Constant Flux Approximation	•	•	401
12-5	Radi	ation Damping of Wave Motion	•	÷	404
12-6	Equa	tions of Motion with Radiation Flow	•		407
12-7	Shoc.	k Structure with Radiation	•	•	412
12-8	None	equilibrium Radiation in Shocks	·	•	418
12–9	Role	of Free Electrons	·	·	423
Chapter	a 13	SHOCK-FRONT STRUCTURE			
13-1	The	Shock Front as a Discontinuity			428
13 - 2	The	Shock Front with Heat Conduction and Viscosity	y		433
13 - 3	A Hy	vpersonic Shock Front in Argon			437
13–4	A Hy	personic Shock Front in Air	•	•	457
APPENDI	x A	SPHERICAL SHOCK WAVES INCLUDING HEAT			
	.A 11.	Conduction		÷	466
Appendi	xB.	MATRIX ELEMENTS AND OSCILLATOR STRENGT	AS		
	В	-1 Oscillator Strengths for Degenerate Levels			470
	B	-2 Dipole Transitions in a Coulomb Field			471
	B	-3 Nonhydrogenic Wave Functions	÷		474
	В	-4 Electronic Bands in Molecules		•	475
Appendi	x C.	The Morse Function		•	480
Appendi	x D.	DIFFERENTIAL SCATTERING CROSS SECTIONS			483
				•	
Appendi	x E.	CHEMICAL EQUILIBRIUM	•	·	489
Appendi	xF.	EVALUATION OF INTEGRALS FOR CHAPMAN-			
		Enskog Theory		٠	493
Appendi	x G.	VIBRATIONAL RELAXATION IN SHOCK FRONTS	•	•	495
Apppyor	νU	PRODERWEG OF THE INTERPOLYDON TO THE			
APPENDI	х п.	FUNCTIONS			498
			•	٠	100
Appendi	x I.	Constants and Conversion Factors \ldots	•		500
INDEX					507

CHAPTER 12 RADIATION TRANSPORT APPLICATIONS

х