CONTENTS

Translator's Introduction							1
		-					_

PART I

THEORY OF GASES WITH MONATOMIC MOLECULES, WHOSE DIMEN-SIONS ARE NEGLIGIBLE COMPARED TO THE MEAN FREE PATH.

Foreword.									÷					21
Introduction		•												23
1. Mechani	cal	ana	alog	gy f	or t	the	beh	avi	or of	a	gas			23
2. Calculati	ion	of	the	pre	essu	ire (of a	gas	в.		÷.			30

CHAPTER I

The molecules are elastic spheres. External forces and visible mass motion are absent.

3.	Maxwell's proof of the velocity distribution law; frequency of	
	collisions	36
4.	Continuation; values of the variables after the collision; col-	
	lisions of the opposite kind.	43
5.	Proof that Maxwell's velocity distribution is the only possible	
	one	49
6.	Mathematical meaning of the quantity H	55
7.	The Boyle-Charles-Avogadro law. Expression for the heat	
	supplied	62
8.	Specific heat. Physical meaning of the quantity H	68
9.	Number of collisions	75
10.	Mean free path	82
11.	Basic equation for the transport of any quantity by the mo-	
	lecular motion	87
12.	Electrical conduction and viscosity of the gas	91
13.	Heat conduction and diffusion of the gas	98
14.	Two kinds of approximations; diffusion of two different gases	104

CHAPTER II

THE MOLECULES ARE CENTERS OF FORCE. CONSIDERATION OF

EXTERNAL FORCES AND VISIBLE MOTIONS OF THE GAS.

15.	Development of partial differential equations for f and F .	110
16.	Continuation. Discussion of the effects of collisions	114
17.	Time-derivatives of sums over all molecules in a region	123
18.	More general proof of the entropy theorem. Treatment of the	
	equations corresponding to the stationary state	131

19.	Aerostatics. Entropy of a heavy gas whose motion of	does	not	
	violate Equations (147).			141
20.	General form of the hydrodynamic equations			147

CHAPTER III

THE MOLECULES REPEL EACH OTHER WITH A FORCE INVERSELY PROPORTIONAL TO THE FIFTH POWER OF THEIR DISTANCE.

21.	Integration of the terms resulting from collisions	161
22.	Relaxation time. Hydrodynamic equations corrected for vis-	
	cosity. Calculation of B_5 using spherical functions	172
23.	Heat conduction. Second method of approximate calculations	182
24.	Entropy for the case when Equations (147) are not satisfied.	
	Diffusion	197

PART II

Van	DER	WAALS'	THEORY;	GASES	WITH	COMPOUND	MOLECULES;
		Gas di	SSOCIATIO	N; CON	CLUDI	NG REMARK	3.

Foreword.	•			•	•		 •	•			215

CHAPTER I

Foundations of van der Waals' theory.

1.	General viewpoint of van der Waals.	217
2.	External and internal pressure	220
3.	Number of collisions against the wall	221
4.	Relation between molecular extension and collision number .	222
5.	Determination of the impulse imparted to the molecules	224
6.	Limits of validity of the approximations made in §4	226
7.	Determination of internal pressure	227
8.	An ideal gas as a thermometric substance	230
9.	Temperature-pressure coefficient. Determination of the con-	
	stants of van der Waals' equation.	231
10.	Absolute temperature. Compression coefficient.	23-
11.	Critical temperature, critical pressure, and critical volume	236
12.	Geometric discussion of the isotherms	240
13.	Special cases	243

CHAPTER II

PHYSICAL DISCUSSION OF THE VAN DER WAALS' THEORY.

14.	Stable and unstable states						246
15.	Undercooling. Delayed evaporation		•		е я	2	248
16.	Stable coexistence of both phases		•		÷., i		250
17.	Geometric representation of the states	in '	which	two	pha	ses	
					_		
	coexist			•			253

vi

19.	Arbitrariness of the definitions of the	pred	cedir	ng s	ecti	on			257
20.	Isopycnic changes of state		•	-					259
21.	Calorimetry of a substance following	van	der	Wa	als'	law	7.		261
22.	Size of the molecule							÷	264
23.	Relations to capillarity						÷		265
24.	Work of separation of the molecules.								268

CHAPTER III

n

L KI	INCIPLES OF GENERAL MECHANICS NI	EEDE.	D FO	R GA	AS	THEO	RY.
25.	Conception of the molecule as a mechan	nical s	yster	n ch	ara	c-	
	terized by generalized coordinates.						271
26.	Liouville's theorem.				•		274
27.	On the introduction of new variables in a	prod	uct of	f diff	erei	n-	
	tials						278
28.	Application to the formulas of §26						283
29.	Second proof of Liouville's theorem						285
30.	Jacobi's theorem of the last multiplier						290
31.	Introduction of the energy differential .			÷	÷		294
32.	Ergoden				•		297
33.	Concept of the momentoid						300
34.	Expression for the probability; average va	alues					304
35.	General relationship to temperature equil	libriuı	n.				310

CHAPTER IV

Gases with compound molecules.

36.	Special treatment of compound molecules	313
37.	Application of Kirchhoff's method to gases with compound	
	molecules	315
38.	On the possibility that the states of a very large number of	
	molecules can actually lie within very narrow limits .	317
39.	Treatment of collisions of two molecules	319
40.	Proof that the distribution of states assumed in §37 will not be	
	changed by collisions	323
41.	Generalizations	325
42.	Mean value of the kinetic energy corresponding to a momen-	
	toid	327
43.	The ratio of specific heats, κ	331
44.	Value of κ for special cases	332
45.	Comparison with experiment	334
46.	Other mean values	336
47.	Treatment of directly interacting molecules	338

CHAPTER V

DERIVATION OF VAN DER WAALS' EQUATION

BY MEANS OF THE VIRIAL CONCEPT.

48.	Specification	of the	point	at	which	van	der	Wa	als'	m	ode	of	
	reasoning	require	simpr	ove	ment								341

49.	More general concept of the virial	342
50.	Virial of the external pressure acting on a gas	344
51.	Probability of finding the centers of two molecules at a given distance	346
52.	Contribution to the virial resulting from the finite extension of	
	the molecules.	350
53.	Virial of the van der Waals cohesion force	352
54.	Alternatives to van der Waals' formulas	354
55.	Virial for any arbitrary law of repulsion of the molecules.	356
56.	The principle of Lorentz's method	358
57.	Number of collisions	361
58.	More exact value of the mean free path. Calculation of W'_i according to Lorentz's method.	364
59.	More exact calculation of the space available for the center of a molecule	365
60.	Calculation of the pressure of the saturated vapor from the laws of probability	367
61.	Calculation of the entropy of a gas satisfying van der Waals'	070
	assumptions, using the calculus of probabilities	310

CHAPTER VI

THEORY OF DISSOCIATION.

62.	Mechanical picture of the chemical affinity of monovalent	
	similar atoms.	376
63.	Probability of chemical binding of an atom with a similar one.	379
64.	Dependence of the degree of dissociation on pressure	383
65.	Dependence of the degree of dissociation on temperature.	385
66.	Numerical calculations	389
67.	Mechanical picture of the affinity of two dissimilar monovalent	
	atoms	393
68.	Dissociation of a molecule into two heterogeneous atoms.	396
69.	Dissociation of hydrogen iodide gas	398
70.	Dissociation of water vapor	399
71.	General theory of dissociation	402
72.	Relation of this theory to that of Gibbs	406
73.	The sensitive region is uniformly distributed around the entire	
	atom	408

CHAPTER VII

SUPPLEMENTS TO THE LAWS OF THERMAL EQUILIBRIUM IN GASES WITH COMPOUND MOLECULES.

74.	Definition of the quantity H , which measures the probabilit	ies	
	of states		412
75.	Change of the quantity H through intramolecular motion		414
76.	Characterization of the first special case considered		415
77.	Form of Liouville's theorem in the special case considered		417
78.	Change of the quantity H as a consequence of collisions.		419

79. Most general characterization of the collision of two molecules 422

80.	Application of Liouville's theorem to collisions of the most
	general kind
81.	Method of calculation with finite differences
82.	Integral expression for the most general change of H by col-
	lisions
83.	Detailed specification of the case now to be considered
84.	Solution of the equation valid for each collision
85.	Only the atoms of a single type collide with each other
86.	Determination of the probability of a particular kind of central
	motion
87.	Characterization of our assumption about the initial state . 441
88.	On the return of a system to a former state
89.	Relation to the second law of thermodynamics
90.	Application to the universe
91.	Application of the probability calculus in molecular physics . 448
92.	Derivation of thermal equilibrium by reversal of the time di-
	rection
93.	Proof for a cyclic series of a finite number of states 453
Bib	liography
Ind	0× (P2
140	σλ