Contents

PART I MOMENTUM TRANSPORT

Chapter 1	Viscosity and the Mechanism of Momentum Transport	3
*§1.1	Newton's Law of Viscosity	3
	*Example 1.1-1. Calculation of Momentum Flux, 7	
*§1.2	Non-Newtonian Fluids	10
*§1.3	Pressure and Temperature Dependence of Viscosity	15
	*Example 1.3–1. Estimation of Viscosity from Critical Properties, 18	
	*Example 1.3-2. Effect of Pressure on Gas Viscosity, 19	
§1.4	Theory of Viscosity of Gases at Low Density	19
	Example 1.4–1. Computation of the Viscosity of a Gas at Low Density, 25	
	Example 1.4-2. Prediction of the Viscosity of a Gas Mixture at Low Density, 25	
§1.5	Theory of Viscosity of Liquids	26
	Example 1.5–1. Estimation of the Viscosity of a Pure Liquid, 29	
	•	
Chapter 2	Velocity Distributions in Laminar Flow	34
*§2.1	Shell Momentum Balances: Boundary Conditions	35
*§2.2	Flow of a Falling Film	37
	*Example 2.2-1. Calculation of Film Velocity, 41	
	Example 2.2–2. Falling Film with Variable Viscosity, 41	
		×

xii Contents

*\$2.3	Flow through a Circular Tube *Example 2.3-1. Determination of Viscosity from Capillary Flow Data, 48 Example 2.3-2. Bingham Flow in a Circular Tube, 48	42
*§2.4	Flow through an Annulus	51
§2.5	Adjacent Flow of Two Immiscible Fluids	54
*§2.6	Creeping Flow Around a Solid Sphere	56
32.0	*Example 2.6-1. Determination of Viscosity from Terminal Velocity of a Falling Sphere, 60	50
Chapter 3	The Equations of Change for Isothermal Systems	71
*§3.1	The Equation of Continuity	74
*§3.2	The Equation of Motion	76
§3.3	The Equation of Mechanical Energy	81
*§3.4	The Equations of Change in Curvilinear Coordinates	82
*§3.5	Use of the Equations of Change to Set Up Steady Flow Problems	92
	*Example 3.5-1. Tangential Annular Flow of a Newtonian Fluid, 94 *Example 3.5-2. Shape of the Surface of a Rotating Liquid, 96	92
	Example 3.5-2. Shape of the Surface of a Rotating Liquid, 90 Example 3.5-3. Torque Relationships and Velocity Distribu- tion in the Cone-and-Plate Viscometer, 98	
§ 3.6	The Equations of Change for Incompressible Non-Newtonian Flow Example 3.6-1. Tangential Annular Flow of a Bingham Plastic, 104	101
	Example 3.6-2. Components of the Momentum Flux Tensor For Non-Newtonian Radial Flow between Two Parallel Disks, 106	
*§3.7	Dimensional Analysis of the Equations of Change *Example 3.7-1. Prediction of Vortex Depth in an Agitated Tank, 108	107
Chapter 4	Velocity Distributions with More Than One	
	Independent Variable	123
*§4.1	Unsteady Viscous Flow	123
	*Example 4.1-1. Flow Near a Wall Suddenly Set in Motion, 124 Example 4.1-2. Unsteady Laminar Flow in a Circular	
24.2	Tube, 126	
§4.2	Steady Viscous Flow With Two Nonvanishing Velocity Components: The Stream Function Example 4.2-1. "Creeping Flow" Around a Sphere, 132	130

Contents		xiii
§4.3	Steady Two-Dimensional Potential Flow Example 4.3-1. Ideal Flow Around a Cylinder, 136 Example 4.3-2. Flow into a Rectangular Channel, 138	133
§4.4	Boundary-Layer Theory Example 4.4-1. Flow Near a Wall Suddenly Set in Motion, 140 Example 4.4-2. Flow Near the Leading Edge of a Flat Plate, 142	140
Chapter 5	Velocity Distributions in Turbulent Flow	153
*§5.1	Fluctuations and Time-Smoothed Quantities	154
*§5.2	Time-Smoothing of the Equations of Change for an	
	Incompressible Fluid	158
*§5.3 §5.4	*Example 5.3-1. Derivation of the Logarithmic Distribution Law for Tube Flow (Far from Wall), 161 *Example 5.3-2. Velocity Distribution for Tube Flow (Near Wall), 163 *Example 5.3-3. Relative Magnitude of Molecular and Eddy Viscosity, 165 The Second-Order Correlation Tensor and Its Propagation (the von Kármán-Howarth Equation)	160
	Example 5.4–1. Decay of Turbulence Behind a Grid, 173	
Chapter 6	Interphase Transport in Isothermal Systems	180
Chapter 6 *§6.1	Interphase Transport in Isothermal Systems Definition of Friction Factors	180 181
	Definition of Friction Factors Friction Factors for Flow in Tubes *Example 6.2-1. Pressure Drop Required for a Given Flow Rate, 188	
*§6.1	Definition of Friction Factors Friction Factors for Flow in Tubes *Example 6.2-1. Pressure Drop Required for a Given	181
*§6.1 *§6.2	Definition of Friction Factors Friction Factors for Flow in Tubes *Example 6.2-1. Pressure Drop Required for a Given Flow Rate, 188 *Example 6.2-2. Flow Rate for a Given Pressure Drop, 189 Friction Factors for Flow Around Spheres *Example 6.3-1. Determination of Diameter of a Falling	181 183
*§6.1 *§6.2 *§6.3	Definition of Friction Factors Friction Factors for Flow in Tubes *Example 6.2-1. Pressure Drop Required for a Given Flow Rate, 188 *Example 6.2-2. Flow Rate for a Given Pressure Drop, 189 Friction Factors for Flow Around Spheres *Example 6.3-1. Determination of Diameter of a Falling Sphere, 194	181 183 190
*§6.1 *§6.2 *§6.3	Definition of Friction Factors Friction Factors for Flow in Tubes *Example 6.2-1. Pressure Drop Required for a Given Flow Rate, 188 *Example 6.2-2. Flow Rate for a Given Pressure Drop, 189 Friction Factors for Flow Around Spheres *Example 6.3-1. Determination of Diameter of a Falling Sphere, 194 Friction Factors for Packed Columns	181 183 190
*§6.1 *§6.2 *§6.3 \$6.4 Chapter 7	Definition of Friction Factors Friction Factors for Flow in Tubes *Example 6.2-1. Pressure Drop Required for a Given Flow Rate, 188 *Example 6.2-2. Flow Rate for a Given Pressure Drop, 189 Friction Factors for Flow Around Spheres *Example 6.3-1. Determination of Diameter of a Falling Sphere, 194 Friction Factors for Packed Columns Macroscopic Balances for Isothermal Systems	181 183 190 196
*§6.1 *§6.2 *§6.3 \$6.4 Chapter 7 *§7.1	Definition of Friction Factors Friction Factors for Flow in Tubes *Example 6.2-1. Pressure Drop Required for a Given Flow Rate, 188 *Example 6.2-2. Flow Rate for a Given Pressure Drop, 189 Friction Factors for Flow Around Spheres *Example 6.3-1. Determination of Diameter of a Falling Sphere, 194 Friction Factors for Packed Columns Macroscopic Balances for Isothermal Systems The Macroscopic Mass Balance	181 183 190 196 208 209

xiv Contents

*§7.5	Use of the Macroscopic Balances to Set Up Steady Flow Problems *Example 7.5-1. Pressure Rise and Friction Loss in a Sudden Expansion, 219 *Example 7.5-2. Performance of a Liquid-Liquid Ejector, 220 *Example 7.5-3. Thrust on a Pipe Bend, 222 *Example 7.5-4. Isothermal Flow of a Liquid through an Orifice, 224	219
§ 7.6	Use of the Macroscopic Balances to Set Up Unsteady Flow Problems Example 7.6-1. Efflux Time for Flow from a Funnel, 226 Example 7.6-2. Oscillation of a Damped Manometer, 229	226
PART II EN	IERGY TRANSPORT	
Chapter 8	Thermal Conductivity and the Mechanism of Energy Transport	243
*§8.1	Fourier's Law of Heat Conduction	244
	*Example 8.1-1. Measurement of Thermal Conductivity, 247	
*§8.2	Temperature and Pressure Dependence of Thermal Conductivity in Gases and Liquids *Example 8.2-1. Effect of Pressure on Thermal Conductivity, 251	249
§8.3	Theory of Thermal Conductivity of Gases at Low Density Example 8.3-1. Computation of the Thermal Conductivity of a Monatomic Gas at Low Density, 258 Example 8.3-2. Estimation of the Thermal Conductivity of a Polyatomic Gas at Low Density, 258 Example 8.3-3. Prediction of the Thermal Conductivity of a Gas Mixture at Low Density, 259	253
§8.4	Theory of Thermal Conductivity of Liquids Example 8.4-1. Prediction of the Thermal Conductivity of a Liquid, 261	260
§ 8.5	Thermal Conductivity of Solids	262
Chapter 9	Temperature Distributions in Solids and in	
Chapier 7	Laminar Flow	265
*§9.1	Shell Energy Balances; Boundary Conditions	266
*§9.2	Heat Conduction with an Electrical Heat Source *Example 9.2-1. Voltage Required for a Given Temperature Rise in a Wire Heated by an Electric Current, 271 Example 9.2-2. Heating of an Electric Wire with Temperature- Dependent Electrical and Thermal Conductivity, 272	267

Contents		χv
	H. (C. d. d 'd. N. t. H. (C.	
§9.3	Heat Conduction with a Nuclear Heat Source	274
*§9.4	Heat Conduction with a Viscous Heat Source	276
§9.5	Heat Conduction with a Chemical Heat Source	279
*§9.6	Heat Conduction through Composite Walls: Addition of Resistances *Example 9.6-1. Composite Cylindrical Walls, 286	283
§ 9.7	Heat Conduction in a Cooling Fin Example 9.7-1. Error in Thermocouple Measurement, 290	288
*§9.8	Forced Convection	291
*§9.9	Free Convection	297
Chapter 10	The Equations of Change for Nonisothermal Systems	310
*§10.1	The Equations of Energy	311
*§10.2	The Energy Equation in Curvilinear Coordinates	317
*§10.3	The Equations of Motion for Forced and Free Convection in Nonisothermal Flow	317
*§10.4	Summary of the Equations of Change	321
*§10.5	Use of the Equations of Change to Set Up Steady-State Heat Transfer Problems *Example 10.5-1. Tangential Flow in an Annulus with Viscous Heat Generation, 325 *Example 10.5-2. Steady Flow of a Nonisothermal Film, 326 *Example 10.5-3. Transpiration Cooling, 328 Example 10.5-4. Free-Convection Heat Transfer from a Vertical Plate, 330 Example 10.5-5. One-Dimensional Compressible Flow: Velocity, Temperature, and Pressure Gradients in a Stationary Shock Wave, 333 *Example 10.5-6. Adiabatic Frictionless Processes in an Ideal Gas, 337	321
*§10.6	Dimensional Analysis of the Equations of Change *Example 10.6-1. Forced-Convection Heat Transfer in an Agitated Tank, 339 *Example 10.6-2. Surface Temperature of an Electric Heating Coil, 340	338
Chapter 11	Temperature Distributions with More Than One Independent Variable	352
*§11.1	Unsteady Heat Conduction in Solids *Example 11.1-1. Heating of a Semi-Infinite Slab, 353 *Example 11.1-2. Heating of a Finite Slab, 354 Example 11.1-3. Cooling of a Sphere in Contact with a Well-Stirred Fluid, 357	352

xvi Contents

§11.2	Fluid Example 11.2-1: Laminar Tube Flow with Constant Heat Flux at Wall, 362 Example 11.2-2. Laminar Tube Flow with Constant Heat Flux at Wall: Asymptotic Solution for Small Distances, 363	361
§11.3	Steady Two-Dimensional Potential Flow of Heat in Solids Example 11.3-1. Temperature Distribution in a Wall, 365	364
§11.4	Boundary-Layer Theory Example 11.4-1. Heat Transfer in Forced-Convection Laminar Flow along a Heated Flat Plate, 367	366
Chapter 12	Temperature Distributions in Turbulent Flow	375
*§12.1	Temperature Fluctuations and the Time-Smoothed Temperature	375
* §12.2	Time-Smoothing the Energy Equation	377
*§12.3	Semiempirical Expressions for the Turbulent Energy Flux *Example 12.3-1. Temperature Profiles in Steady Turbulent Flow in Smooth Circular Tubes, 380	379
§12.4	The Double Temperature Correlation and Its Propagation: The Corrsin Equation Example 12.4-1. Decay Equation for the Double Temperature Correlation, 386	384
Chapter 13	Interphase Transport in Nonisothermal Systems	389
*§13.1	Definition of the Heat-Transfer Coefficient *Example 13.1-1. Calculation of Heat-Transfer Coefficients from Experimental Data, 394	390
*§13.2	Heat-Transfer Coefficients for Forced Convection in Tubes *Example 13.2-1. Design of a Tubular Heater, 405	396
*§13.3	Heat-Transfer Coefficients for Forced Convection around Submerged Objects	407
§13.4	Heat-Transfer Coefficients for Forced Convection through Packed Beds	411
*§13.5	Heat-Transfer Coefficients for Free Convection *Example 13.5-1. Heat Loss by Free Convection from a Horizontal Pipe, 414	412
§13.6	Heat-Transfer Coefficients for Condensation of Pure Vapors on Solid Surfaces Example 13.6-1. Condensation of Steam on a Vertical Surface 418	415

Contents		xvii
Chapter 14	Energy Transport by Radiation	426
*§14.1	The Spectrum of Electromagnetic Radiation	427
*§14.2	Absorption and Emission at Solid Surfaces	429
*§14.3	Planck's Distribution Law, Wien's Displacement Law, and the Stefan-Boltzmann Law *Example 14.3-1. Temperature and Radiant-Energy Emission of the Sun, 437	433
*§14.4	Direct Radiation between Black Bodies in Vacuo at Different Temperatures *Example 14.4-1. Estimation of the Solar Constant, 443 *Example 14.4-2. Radiant Heat Transfer between Disks, 444	437
*§14.5	Radiation between Nonblack Bodies at Different Temperatures *Example 14.5-1. Radiation Shields, 446 *Example 14.5-2. Radiation and Free-Convection Heat Losses from a Horizontal Pipe, 448 Example 14.5-3. Combined Radiation and Convection, 448	445
§14.6	Radiant Energy Transport in Absorbing Media Example 14.6-1. Absorption of a Monochromatic Radiant Beam, 451	449
Chapter 15	Macroscopic Balances for Nonisothermal Systems	456
Chapter 15 *§15.1		456
	Macroscopic Balances for Nonisothermal Systems The Macroscopic Energy Balance The Macroscopic Mechanical Energy Balance (Bernoulli Equation)	
*§15.1	The Macroscopic Energy Balance The Macroscopic Mechanical Energy Balance (Bernoulli	456
*§15.1 *§15.2	The Macroscopic Energy Balance The Macroscopic Mechanical Energy Balance (Bernoulli Equation)	456 460
*§15.1 *§15.2 *§15.3	The Macroscopic Energy Balance The Macroscopic Mechanical Energy Balance (Bernoulli Equation) Summary of the Macroscopic Balances for Pure Fluids Use of the Macroscopic Balances for Solving Steady-State Problems *Example 15.4-1. The Cooling of an Ideal Gas, 463 *Example 15.4-2. Parallel- or Counter-Flow Heat	456 460 462

xviii Contents

PART III MASS TRANSPORT

Chapter 10	Diffusivity and the Mechanisms of Mass Transport	495
*§16.1	Definitions of Concentrations, Velocities, and Mass Fluxes Example 16.1-1. Relations among the Molar Fluxes, 501	496
*§16.2	Fick's Law of Diffusion	502
*§16.3	*Example 16.3-1. Estimation of Mass Diffusivity at Low Density, 507	504
	*Example 16.3-2. Estimation of Mass Diffusivity at High Density, 507	
§16.4	Theory of Ordinary Diffusion in Gases at Low Density Example 16.4-1. Computation of Mass Diffusivity at Low Density, 512	508
§16.5	Theories of Ordinary Diffusion in Liquids Example 16.5-1. Estimation of Mass Diffusivity for a Binary Liquid Mixture, 515	513
Chapter 17	Concentration Distributions in Solids and in	
	Laminar Flow	519
* §17.1	Shell Mass Balances: Boundary Conditions	521
*§17.2	Diffusion Through a Stagnant Gas Film *Example 17.2-1. Determination of Diffusivity, 526 Example 17.2-2. Diffusion Through a Nonisothermal Spherical Film, 527	522
*§17.3	Diffusion with Heterogeneous Chemical Reaction *Example 17.3-1. Diffusion with Slow Heterogeneous Reaction, 531	529
*§17.4	Diffusion with Homogeneous Chemical Reaction *Example 17.4-1. Gas Absorption with Chemical Reaction in an Agitated Tank, 534	532
* §17.5	Diffusion into a Falling Liquid Film: Forced-Convection Mass Transfer *Example 17.5-1. Gas Absorption from Rising Bubbles, 541	537
§17.6	Diffusion and Chemical Reaction Inside a Porous Catalyst: the "Effectiveness Factor"	542
Chapter 18	The Equations of Change for Multicomponent Systems	554
*§18.1	The Equations of Continuity for a Binary Mixture	555
*§18.2	The Equation of Continuity of A in Curvilinear Coordinates	558
§18.3	The Multicomponent Equations of Change in Terms of the Fluxes	560

Contents		xix
§18.4	The Multicomponent Fluxes in Terms of the Transport Properties	563
§18.5	Use of the Equations of Change to Set Up Diffusion Problems Example 18.5-1. Simultaneous Heat and Mass Transfer, 572 Example 18.5-2. Thermal Diffusion, 574 Example 18.5-3. Pressure Diffusion, 575 Example 18.5-4. Forced Diffusion, 577 Example 18.5-5. Three-Component Ordinary Diffusion with Heterogeneous Chemical Reaction, 578	572
*§18.6	Dimensional Analysis of the Equations of Change for a Binary Isothermal Fluid Mixture *Example 18.6-1. Blending of Miscible Fluids, 582	580
Chapter 19	Concentration Distributions with More Than One Independent Variable	592
§19.1	Unsteady Diffusion Example 19.1–1. Unsteady-State Evaporation, 594 Example 19.1–2. Unsteady Diffusion with First-Order Reaction, 598 Example 19.1–3. Gas Absorption with Rapid Chemical Reaction, 599	594
§19.2	Boundary-Layer Theory: von Kármán Approximate Method Example 19.2-1. Unsteady Evaporation into a Multi- component Mixture, 602 Example 19.2-2. Diffusion and Chemical Reaction in Iso- thermal Laminar Flow Along a Soluble Flat Plate, 605	601
§19.3	Boundary-Layer Theory: Exact Solutions for Simultaneous Heat, Mass, and Momentum Transfer Example 19.3-1. Calculation of Mass-Transfer Rate, 619	608
Chapter 20	Concentration Distributions in Turbulent Flow	626
*§20.1	Concentration Fluctuations and the Time-Smoothed Concentration	626
*§20.2	Time-Smoothing of the Equation of Continuity of A	627
§20.3	Semiempirical Expressions for the Turbulent Mass Flux Example 20.3-1. Concentration Profiles in Turbulent Flow in Smooth Circular Tubes, 630 Example 20.3-2. Evaporation of Ammonia in a Wetted Wall Column, 630	629
§20.4	The Double Concentration Correlation and Its Propagation:	633

xx Contents

Chapter 21	Interphase Transport in Multicomponent Systems	636
*§21.1	Definition of Binary Mass-Transfer Coefficients in One Phase	637
*§21.2	Correlations of Binary Mass-Transfer Coefficients in One	
	Phase at Low Mass-Transfer Rates	642
	*Example 21.2-1. Evaporation of a Freely Falling Drop, 648 *Example 21.2-2. The Wet-and-Dry-Bulb Psychrometer, 649	
*§21.3	Definition of Binary Mass-Transfer Coefficients in Two Phases at Low Mass-Transfer Rates	652
*§21.4	Definition of the Transfer Coefficients for High Mass- Transfer Rates	656
§21.5	Transfer Coefficients at High Mass-Transfer Rates: Film Theory Example 21.5-1. Rapid Evaporation of a Pure Liquid, 666	658
	Example 21.5–2. Use of Correction Factors in Droplet Evaporation, 667	
	Example 21.5–3. Wet-Bulb Performance at High Mass- Transfer Rates, 667	
§21.6	Transfer Coefficients at High Mass-Transfer Rates: Penetration Theory	668
§21.7	Transfer Coefficients at High Mass-Transfer Rates: Boundary-Layer Theory Example 21.7-1. Rapid Evaporation from a Plane Surface, 676	672
§21.8	Transfer Coefficients in Multicomponent Systems Example 21.8-1. Mass Transfer in a Fixed-Bed Catalytic Reactor, 678	676
Chapter 22	Macroscopic Balances for Multicomponent Systems	685
*§22.1	The Macroscopic Mass Balances	686
*§22.2	The Macroscopic Momentum Balance	688
*§22.3	The Macroscopic Energy Balance	689
*§22.4	The Macroscopic Mechanical Energy Balance	689
*§22.5	Use of the Macroscopic Balances to Solve Steady-State Problems	690
	*Example 22.5–1. Energy Balance for a Sulfur Dioxide Converter, 690	
	*Example 22.5–2. Height of a Packed-Tower Absorber, 692 Example 22.5–3. Expansion of a Reactive Gas Mixture through a Frictionless Adiabatic Nozzle, 697	
§22.6	Use of the Macroscopic Balances for Solving Unsteady- State Problems Example 22.6-1. Start-Up of a Chemical Reactor, 700	700
	Example 22.6–2. Unsteady Operation of a Packed Column, 702	

Contents		xxi
Postface		712
Appendix	A Summary of Vector and Tensor Notation	7 15
§A.1	Vector Operations from a Geometrical Viewpoint	716
§A.2	Vector Operations from an Analytical Viewpoint Example A.2-1. Proof of a Vector Identity, 722	719
§A.3	The Vector Differential Operations	723
§A.4	Second Order Tensors Example A.4-1. Proof of a Tensor Identity, 731	726
§A.5	Integral Operations for Vectors and Tensors	731
§A.6	Vector and Tensor Components in Curvilinear Coordinates Example A.6-1. Transformation Characteristics of Vector and Tensor Products, 736	733
§A.7	Differential Operations in Curvilinear Coordinates Example A.7-1. Derivation of Several Differential Operations in Cylindrical Coordinates, 737	736
Appendix	B Tables for Prediction of Transport Properties	743
§B.1 §B.2	Intermolecular Force Parameters and Critical Properties Functions for Prediction of Transport Properties of Gases at	744
	Low Densities	746
Appendix	C Constants and Conversion Factors	747
§C.1	Mathematical Constants	747
§C.2	Physical Constants	747
§C.3	Conversion Factors	748
Notation		757
Author Index		765
Subject Index		769