CONTENTS

1	Use of Symmetry in Quantum Mechanics	1
1-1	Groups and their properties	1
1-2	Group representations	5
	1-2a Definitions and basic theorems	5
	1-2b Rules for constructing the character table of a group	8
	1-2c Further relationships among representations	12
1-3	Representations and eigenfunctions	15
	1-3a Classification of the eigenstates	15
	1-3b Projection operators and orthogonality theorems on partner functions	17
	1-3c Further relationships between representations and basis functions	19
1-4	Rotation and rotation-inversion groups	20
	1-4a Irreducible representations of rotation and rotation-inversion groups	20
	1-4b Decomposition of the irreducible representations of the rotation-inversion group	
	into irreducible representations of finite groups	22
1-5	Spin dependent functions and double groups	23
	1-5a Transformation of spin functions under proper and improper rotations	23
	1-5b Irreducible representations of double groups	26
	1-5c Decomposition of the states of a simple group into the states of a double group	30
1-6	Time reversal symmetry	31
	1-6a The time reversal operator	31
	1-6b Essential degeneracies due to time reversal symmetry	35
1-7	Selection rules	38
Re	ferences and notes	39
2	Symmetry Properties of the Electronic States in Crystals	41
- 1	Translation group and Brillouin zone	41
2-1	Translation group and bimoun zone	46
2-2	2.2.2 Irreducible representations of the space groups	46
	2-2b Additional irreducible representations of the space groups and spin-orbit splitting	56
2-3	Additional degeneracies required by time reversal symmetry	58
2-4	Selection rules	63
2-4	2-4a Selection rules at a given point of the Brillouin zone	63
	2-4b Selection rules connecting different points of the Brillouin zone	64
Re	ferences and notes	66
-		67
3	METHODS OF CALCULATING THE ELECTRONIC BAND STRUCTURES OF CRYSTALS	07
3-	1 The basic approximations	67
3-	2 The tight binding method	71
	3-2a Description of the method	71
	3-2b Matrix elements of the secular equation appearing in the tight binding method	72
	3-2c Symmetrized combinations of Bloch sums	75
	3-2d Discussion of the tight binding method	76
3-	3 The orthogonalized plane wave method	77
	3-3a Description of the method	77
	3-3b Matrix elements of the secular equation appearing in the OPW method	78
	3-3c Use of crystal symmetry in the OPW method	79

CONTENTS

3-3d Discussion of the OPW method 3-3e Perturbative approach to the OPW method	80 81
3-4 The pseudopotential method	83
3-4a Formulation of the pseudopotential method	83
3-4 b Pseudopotential approximation	85
3-5 The cellular method	86
3-5a Description of the method	86
3-5b Relevant aspects of the cellular method	87
3.6 The augmented plane wave method	89
3-6a Description of the method	89
3-6b Discussion of the APW method	90
3-7 Green's function method	91
2.0 The second method	02
3-8 The quantum defect method	93
3-9 The $k \cdot p$ method	94
3-10 Relativistic effects	97
3-10a General considerations	97
3-10b Relativistic effects in atoms	98
3-10c Relativistic effects in crystals	100
References and notes	102
4 ELECTRONIC BAND STRUCTURE IN SOME CRYSTALS	104
4-1 Energy hands of isoelectronic semiconductors with the diamond and zinchlende structure	104
4-1 a Symmetry properties of the diamond lattice	104
4-1 b Electronic state calculations in diamond, silicon, germanium, and grey tin	108
4-1 c Symmetry properties of the zincblende lattice	115
4-1 d Electronic states in isoelectronic semiconductors with zincblende structure	117
4-2 Energy bands of layer type crystals	120
4-2a Symmetry properties of graphite and hexagonal BN in the two-dimensional approximation	120
4-2b Electronic state calculations for graphite and BN in the two-dimensional approximation	1 1 2 5
4-2c Electronic states of graphite and BN in the three-dimensional case	129
4-2d Considerations on other layer structures	130
4-3 Energy bands of linear chain type crystals; selenium and tellurium	134
4-3a Symmetry properties of the selenium structure	134
4-3b Energy bands for selenium and tellurium	137
4-4 Considerations on the band structure of some large gap insulators	138
4-5 Considerations on the band structure of some molecular crystals	142
4-6 Considerations on the band structure of simple metals	143
Petersness and notes	146
References and notes	140
5 INTERBAND TRANSITIONS AND OPTICAL PROPERTIES	149
5-1 General theoretical analysis of band-to-band optical transitions	149
5-1 a Basic approximations	149
5-1 b Quantum theory of band-to-band transitions	150
5-1 c Connection with the optical constants	153
5-2 Structure of the optical constants at critical points	155
5-2a Theoretical discussion	155
5-2b Experimental evidence. Two examples: germanium and graphite	160
5-3 Multiphoton transitions	164
5-4 Indirect hand-to-hand transitions	168
5-4a General remarks and electron-phonon interaction	168
5-4b Properties of indirect transitions	170
Appendix 5A Matrix elements of one-electron and two-electron operators between determinanta	1
states	1/2

	randix 5. Kaanmans' approximation	174
Appendix 58 Koophians approximation Deferences and notes		174
Rei	erences and notes	170
6	Excitons in Crystals	177
6-1	General considerations	177
6-2	Tight binding excitons	178
	6-2a Tight binding excitons in a two-band model	178
	6-2b Relevant aspects of the tight binding exciton theory	182
	6-2c Optical transitions with exciton effects	183
6-3	Weak binding excitons 6.2. Weak hinding excitons in a two-hand model	184
	6-3b Examples of solution of the effective mass equation	187
	6-3c Optical properties with exciton effects in a two-band model semiconductor	190
	6-3d Excitons at the edge of degenerate bands. Two examples	196
6-4	Intermediately bound excitons	201
	6-4a Theory and general considerations	201
	6-6c Comments on polarization screening	204
6-5	Two-photon exciton transitions	205
6-6	Indirect exciton transitions	206
6-7	Interband mixing and high energy excitons	210
Ap	pendix 6A Evaluation of matrix elements appearing in the tight binding exciton theory	211
Ap	pendix 6B Effective mass equation for weakly bound excitons	213
Ref	erences and notes	216
7	Impurity States in Insulators and Semiconductors	218
7-1	Introduction	218
7-2	Tightly bound impurity states	219
	7-2a General remarks and classification of the states	219
	7-2b Many-electron states	223
	7-2c Computation of the splittings	230
7 2	Shallow impurity states	231
7-5	7-3a Introduction	231
	7-3b General formulation of the impurity problem	232
	7-3c Effective mass approximation and applications	235
	7-3d Intervalley mixing and degenerate bands	240
7 1	Intermediately bound impurity states Isoelectronic impurities	248
7.5	Considerations on ontical transition processes involving impurities	251
Ref	Considerations on optical transmon processes myoring input inter-	253
Rei	erences and notes	
•	ETTERS OF EVERNAL PERTURBATIONS	255
•	Lifects or Extended Forostations	255
8-1	Infroduction and general remarks	256
0-2	Effect of injuriostatic pressure and anothing	263
8-3	Electronic states and optical constants of crystals in an electric field	267
ð-4	8-4a General remarks	267
	8-4b Theory of electric field effects on interband transitions	269

CONTENTS

8-5 Electronic states and optical constants in a magnetic field	276
8-5a General remarks and effective mass formulation	276
8-5 b Magnetic quantum levels	277
8-5c Interband transitions in a magnetic field and selection rules	281
8-5d Degenerate bands and interband coupling	284
8-6 Excitons in a magnetic field	286
Appendix 8 A Electron in a uniform electric field	291
References and notes	292
Subject index	295