CONTENTS

.

- 10²

2

33

(B)

2 - n - **7**

 $\frac{1}{2}$ \propto

2 d²0 g

Y • 1

Ec	ditor's Foreword	v
Pr	reface	vii
1.	Introduction	1
	A. Preparation and Texts	1
	B. Plan of the Course	2
	C. Generalities and Classification of Solids	3
2.	One-Electron Theory	9
	A. Hartree-Fock Theory	9
	1. General Philosophy of Hartree-Fock	9
	2. Derivation of Self-consistent Equations: Second Quantization	15
	B. Energy Bands in Solids	28
	1. Perturbation Theory for Weak Periodic Potentials:	
	Brillouin and Jones Zones and Symmetrized Plane Waves	28
	2. The Cellular Method: Quantitative Calculation	
	of Binding Energy	43
	3. Exchange and Correlation in the Free-Electron Gas	53
	4. The O.P.W. Method	61
	C. One-Electron Band Theory in the Presence of Perturbing Fields	77
	1. Introduction	77
	2. Weakly Bound Impurity States	80
	3. Motion in External Fields	82
	4. "Breakdown" Effects	88
	5. Rigorous Basis of Effective Hamiltonian Theory	91
3.	Elementary Excitations	96
	A. The Idea of Elementary Excitations: Generalities on	
	Many-Body Theory	96
	1. The Variational Theorem	97
	2. The Exclusion Principle	97
	3. Screening	99

Contents

16 at

· · ·

28

4. The Concept of Elementary Excitations	99	
B. The N + 1 Body Problem	104	
1. Quasi-particles	104	
2. Effects of Phonons in the $N + 1$ Body Problem	112	
C. Quasi-particles in Metals: The Fermi Liquid	126	
D. Collective Excitations	132	
1. Excitons	132	
2. Spin Waves: Heisenberg Hamiltonian and the Magnetic State	157	
3. Ferromagnetic Spin Waves	164	
4. Antiferromagnetic Spin Waves and Broken Symmetry	175	
Bibliography		

• 3

2.1

. 50

10

.

32