TABLE OF CONTENTS

Foreword

PART I

FOUNDATIONS OF THE THEORY

I. Need for the Proposed Theory

1. Difficulties Arising Upon Application of Boltzmann's	
Method to Sets of Charged Particles and Their Elimi-	
nation	9
2. Collective Interactions in the Case of Arbitrary Central	
Forces	19
3. Elimination of the Difficulties Arising in the Attempt to	
Unite Classical Electrodynamics and Mechanics	22
4. Abandonment of the Principle of Point Localization, and	
Connection with Gibbs' Statistical Mechanics	26
5. Theory of Crystallization and Gibbs' Statistics	36
6. Theory of Nonlocalized Particles and Quantum Mechanics	40
7. Physical Ideas of the Theory	54
II I'll I A line Town In a start Drugtions and Their Dron	
11. Initial Assumptions, Fundamental Equations and Their Prop-	
erties	<i>c</i> 0
8. Fundamental Equations	62
9. Particular Forms of the Equations	69
10. Laws of Conservation	75
11. Some Cases of Exact Solutions	81
12. Invariance and Relativity Form of the Fundamental	~ ~
Equations	88
III. Connection with Classical Theories	
13 Transition to Classical Mechanics	95
14 Transition to Theory of Continuous Media	100
15. Transition to Electrodynamics	104
16. Transition to Relativity Dynamics of Point Particles	107
10. ITansion to relativity Dynamics of Fourt Fullers	

IV. Definition of Stationary States of Systems of Two and of	
Many Particles, as the Problem of the Eigenvalues of Non-	
linear Equations	
17. Fundamental Equations	111
18. Method of Branching	116
V. Solutions Depending on Time	131
19. Linearization of the Equations	131
20. Cauchy's Problem	135
12. Solutions of the Type	141
22. Solutions Representing "Self-Accelerating" Processes	158

PART II APPLICATIONS OF THE THEORY

.

. .

1. The Theory of Crystals	
23. Introduction	165
24. Discontinuous Formation of Periodic Structure and Cu	ri-
teria of Crystallization	166
25. Nonlinear Theory	171
26. Investigation of Convergence of the Expansion of $u(\cdot)$	r) 179
27. Role of Collective Interactions	184
28. "Lattice" Solution for $\theta = 0$	190
29. Intermediate Temperatures	194
30. Crystallization of a Binary Mixture	207
31. Comparison with Experiment for Case of Argon	220
II Withustion Dupponting of Floatney Diagona	
11. Vioration Properties of Electron Paisma	000
32. Vibration Properties for a Given Initial Distribution	220
33. Nondamping Waves	231
34. Oscillations of Plasma with Fermi's Distribution Function	050
In State of Degeneration	200
35. Behavior of Plasma in External Electrical Field	290
III. Theory of Striations	
36. Introduction	266
37. Formation of Striations	268
38. Striations in Metals	274
39. Striations and Oscillations of Electron Plasma	284
40. Shifting Striations	285
IV Wave Duementies of Media Compisting of Neuturl Dantislas	
1v. wave Properties of Meana Consisting of Neutral Particles	000
41. Some Peculiarities of Wave Propagation	292
42. Strictions in a Stream of Neutral Particles	296

V.	Tor	vards the Theory of Electron-Ray High-Frequency Gener-	
	ato	rs	
	43.	Propagation of Modulation Along Beam of Electrons for the Case of Low Concentration	299
	44.	Study of Propagation of Modulation Along Concentrated Beams, Taking Into Consideration Interaction Among	
		Electrons	305
	45.	Diode Theory	312
VI.	. El	ectron Plasma in Hydrodynamic Approximation	
	46.	Fundamental Equations. Expression for Energy and Ener-	
		gy Flow	327
	47.	Surface and Volume Oscillations	332
	48.	Methods of Exciting Plasma Oscillations	342
	49.	Properties of Oscillations Under Various Physical Con-	
		ditions	354
	50.	Change in Debye Polarization with Motion of Charge	364
	51.	Theory of Nonisothermal Plasma	374
	52.	Spectrum of Volume and Surface Oscillation for General	
		Case of Nonisothermal Plasma	379
	53.	Phenomenon of Anomalous-Violent Redistribution of Ve-	
		locities of Beam of Electrons in Plasma, and Excitation	
		of Oscillations	389