Contents

Preface	page	ix
CHAPTER I BASIC EQUATIONS		1
1.1 Introduction		1
(a) Reaction cross-sections		2
(b) Frequency distributions after collision		5
(c) The fission distribution function		9
(d) Inelastic scattering		10
1.2 The Elastic Scattering Distribution Function		11
(a) Elastic collisions		11
(b) General formula for the distribution functio	n	13
(c) Negligible moderator temperatures		14
(d) Thermalization theory		16
(e) The lethargy		18
1.3 The Equations of Neutron Transport		20
(a) Neutron flux and collision density		20
(b) The transport equation		21
(c) The zeroth harmonic moment		23
(d) The slowing-down density		25
(e) The first harmonic moment		26
1.4 The Spherical Harmonics Method		28
(a) Legendre polynomials		28
(b) Recurrence relations between the spherical ha	.rmonics	30
(c) The P_N -approximation		32
(d) Associated spherical harmonics		33
(e) Boundary conditions		35
1.5 The Integral Equation Method		37
(a) The integral equation for the general case		37
(b) One-group theory		40
(c) One-group theory with isotropic scattering		42

MODERATION	44
2.1 The Energy Spectrum	44
(a) The equation for the collision density	44
(b) Placzek's solution	46
(c) Asymptotic solution	48
2.2 The Effects of Capture	50
(a) Collision density in the presence of absorption	50
(b) The resonance-escape probability	53
(c) Continuous source distributions	55
(d) Moderator consisting of a mixture of elements	56
2.3 Infinite Homogeneous Multiplying Media	57
(a) The criticality condition	57
(b) The four-factor formula	60
2.4 Age Theory	61
(a) Neglect of transients in the energy spectrum	62
(b) Fick's law	65
(c) The equations of age theory	66
2.5 Solutions and Applications of the Age Equation	69
(a) Point source in an infinite medium	69
(b) The physical interpretation of the age	70
(c) Boundary conditions	72
(d) The wave equation	74
(e) The fast non-leakage probability	78
(f) The criticality equation	80
(g) The diffusion length	82
(h) Concluding remarks on Fermi's age theory	84
CHAPTER 3 MULTI-GROUP THEORY	86
3.1 The Multi-Group Equations	86
(a) Introduction	86
(b) The thermal group	87
(c) The fast groups	88
(d) The multi-group equations in the P_1 -approximation	90
(e) The multi-group Boltzmann equation	94

	CONTENTS	vii
3.2	One-Group Diffusion Theory	95
	(a) A reflected slab reactor	96
	(b) Thermal flux in a slab due to a plane source	99
	(c) Point and plane kernels	101
	(d) Neutron waves due to an oscillating source	102
3.3	One-Group Transport Theory	103
	(a) Isotropic scattering in the L-system for a source-free	
	medium	104
	(b) An isotropic point source in an infinite homogeneous	
	medium	106
	(c) Milne's problem	108
	(d) The extrapolation distance	112
	(e) Anisotropic scattering	113
	(f) The diffusion approximation	117
	(g) Some other methods	118
	(i) Yvon's method	118
	(ii) The Wick-Chandrasekhar method of discrete	
	coordinates	119
	(iii) Carlson's S_n method	120
	(iv) Feynman's method	120
3.4	Multi-Group Diffusion Theory	122
	(a) Two-group theory of a reflected reactor	122
	(b) Perturbation theory	126
	(c) Effectiveness of a thin control rod	129
Ind	PY	131