Contents

	PRE	FACE	5
1		GENERAL PROBLEM OF PARTICLE	1
	1.2 1.3	Introduction Statistical notions of transport Reduction to the Boltzmann equation Correlations and fluctuations arising from fission	1 1 4 8
2		E BOLTZMANN EQUATION FOR GAS DMS AND NEUTRONS	11
	2.2 2.3 2.4 2.5 2.6 2.7	Introduction The equation of neutron transport The integral transport equation Derivation of Boltzmann equation for gases 2.4.1 Mixtures of different gases 2.4.2 A canonical transformation 2.4.3 Other forms of the net scattering rate The equilibrium solution and the H-theorem An alternative derivation of the neutron transport equation The continuum equations	11 11 17 26 30 31 32 33 35 38 42
3		The linearised Boltzmann equation for gases NDARY CONDITIONS	50
	3.1 3.2	Neutron transport equation Boltzmann equation for gases 3.2.1 Approximations to the particle-wall scattering kernel	50 52 53
		3.2.2 Accommodation coefficients	56

10	\sim	NT	EN	IT	C
111		11/4	יום	u ı	. "

4 SCA	ATTERING KERNELS	60
4.1	Neutron scattering kernels	60
	4.1.1 The gas model	61
	4.1.2 Scattering in crystals	65
4.2		66
	4.2.1 The hard-sphere model	67
	4.2.2 Maxwell molecules	70
4.3	Synthetic scattering kernels	72
	4.3.1 Synthetic neutron kernels	73
	4.3.2 Synthetic gas kernels	74
	4.3.3 Maxwell molecules	79
4.4		83
4.5	Scattering kernels for radiation	84
TR	ME BASIC PROBLEMS IN NEUTRON ANSPORT AND RAREFIED	0.4
GA	S DYNAMICS	86
5.1	Neutron transport theory	86
	5.1.1 Infinite medium problem	86
	5.1.2 Neutron diffusion coefficient in a non-	
	absorbing medium	88
	5.1.3 Infinite medium diffusion length problem	89
	5.1.4 Finite medium diffusion length problem5.1.5 The critical problem	90
	5.1.5 The critical problem	91
	5.1.6 The pulsed neutron problem	91
	5.1.7 The Milne problem	92
	5.1.8 Green's function and albedo problems	93
	5.1.9 The Kottwitz problem	93
	5.1.10 Neutron waves	94
	5.1.11 Problems in non-planar geometries	95
5.2	Rarefied gas dynamics	95
	5.2.1 Infinite medium problems	96
	5.2.2 Temperature jump and velocity slip5.2.3 Poiseuille flow	101
	5.2.3 Poiseuille flow	103
	5.2.4 Couette flow	105
	5.2.5 Heat transfer	107
	5.2.6 The Rayleigh problem	109
	5.2.7 Sound waves in gases	110
	5.2.8 Relaxation phenomena	113
-	5.2.9 Free molecular flow	115
5.3	Some points of similarity	117

		CONTENTS	11
6	THE	INTEGRAL FORM OF THE TRANSPORT	
		JATION IN PLANE, SPHERICAL AND	
		LINDRICAL GEOMETRIES	121
	6.1	Plane geometry	121
		6.1.1 Derivation of integral equation from first	
		principles	124
	6.2	Spherical geometry	126
		6.2.1 Bare sphere	126
		6.2.2 Two region spherical problem—the black	
		sphere	128
	1 10	6.2.3 Cross-sections that vary inversely as the radius	133
	6.3	Cylindrical geometry	135
		6.3.1 Uniform along the axis	135
		6.3.2 Circular cylinder	137
		6.3.3 Two-region cylindrical problem—the black	
		cylinder	139
		6.3.4 Cross-sections that vary inversely as the radius	143
	6.4	Derivation of the integral equation by the method	
		of characteristics	144
_			
7	EXA	CT SOLUTIONS OF MODEL PROBLEMS	152
	7.1	Introduction	152
	7.2	Synthetic kernels	152
		7.2.1 Neutron scattering	152
		7.2.2 Gas atom scattering	153
	7.3	Model problems in neutron transport theory	154
		7.3.1 Infinite medium diffusion length problem	154
		7.3.2 The Milne problem	162
		7.3.3 The foil problem	188
		7.3.4 One-speed critical problem: replication	195
		7.3.5 General structure of solutions of the neutron	
		transport equation	211
		7.3.6 Other methods of solution	212
	7.4	Model problems in rarefied gas dynamics	213
		7.4.1 Velocity slip and temperature jump	213
		7.4.2 Poiseuille flow	232
		7.4.3 Couette flow	247
8 EIGENVALUE PROBLEMS IN TRANSPORT			
		ORY	265
	8.1	Introduction	265
	8.2	Relaxation in time	265

12	CO	NIT	FER	11	C
12	-	114		v	0

		8.2.1 Neutron density relaxation	267
		8.2.2 Gas atom density relaxation	270
		8.2.3 Extension to finite bodies	273
	8.3	Relaxation in space	273
	0.0	8.3.1 Neutron density relaxation	274
		8.3.2 Gas atom density relaxation	276
		8.3.3 Extensions to multi-dimensional transport	
		theory	277
	8.4	Wave motion	279
	0, 1	8.4.1 Neutron wave dispersion law	280
		8.4.2 Sound wave dispersion law	282
		8.4.3 Extensions to multi-dimensional transport	
		theory	285
	8.5	Analytic continuation and pseudo-discrete	
		eigenvalues	287
		8.5.1 Sound wave propagation	288
		8.5.2 Diffusion length problem	292
		,	
9	COI	LLISION PROBABILITY METHODS	298
	9.1	Introduction	298
	9.2	Derivation of the basic equations	298
	9.3	Single cell theory	30:
	9.4	Plane geometry	307
	9.5	Approximate forms for collision probabilities	314
	9.6	Multiple collision probability	316
	9.7	Summary of collision probability techniques	319
10	1/ A T	RIATIONAL METHODS	323
IO			
		Introduction	323
		Derivation of variational functionals	323
	10.3	Eigenvalues and weighted coefficients—some	227
		examples from neutron transport theory	327
		10.3.1 Critical conditions in a multiplying sphere	327
		10.3.2 Escape probability	330
		10.3.3 Flux depression in a plane foil	331
		10.3.4 Milne problem extrapolated endpoint	335
		10.3.5 Extrapolation distance at the surface of a	3.40
		black sphere	340
	10.4	Applications of the method to rarefied gas	2.41
		dynamics	343
		10.4.1 Heat transfer	343
		10.4.2 Poiseuille flow	349
		10.4.3 Temperature jump and velocity slip	35

	CONTENTS	13
	10.4.4 Viscosity and thermal conductivity	357
	10.5 The method of overlapping spectra	362
	10.5.1 Reactor cell calculations	363
	10.5.2 Shock-wave structure	368
11	POLYNOMIAL APPROXIMATIONS	376
	11.1 Introduction	376
	11.2 Full-range expansions in neutron transport theory	380
	11.2.1 The $P_{\rm v}$ approximation	380
	11.2.2 Kinetic theory and the moment equations	392
	11.3 Half-range expansions	399
	11.3.1 Neutron transport theory—Double- P_L method	400
	11.3.2 Kinetic theory	421
	11.3.3 Method of discrete ordinates and general	
	comments	421
	INDEX	427